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ABSTRACT 

This thesis presents a control architecture that achieves operating standby 

redundancy for a voltage source inverter controller.  The system was designed to increase 

reliability by switching from the primary to the secondary controller when a fault to the 

primary controller occurs.  The behavior of the system was predicted using a computer 

model representing the redundant controller architecture.  The simulated results were then 

verified in lab hardware comprising two FPGAs, a three phase rectifier, an LC filter, and 

a resistive load.  Both simulated and experimental results validate that the final redundant 

controller design switches between redundant controllers with a negligible disturbance. 
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EXECUTIVE SUMMARY 

This thesis was conducted to ascertain the feasibility of a strategy to develop a 

more reliable voltage source inverter (VSI) through operating standby redundant 

controller architecture.  The goal of this research was to determining the level of 

disturbance in a VSI during a switching event between the primary and redundant 

controller.  Both of the controllers in the VSI for this research were designed based on the 

closed loop space vector modulation controller developed in the NPS power lab that 

contained an outer voltage Proportional-Integral (PI) control loop and an inner current PI 

control loop. 

The first objective of this thesis was to design a voltage source inverter with a 

primary and secondary controller that had a fault signal to act as a failure in the primary 

controller.  When the fault was detected the system would automatically switch from the 

primary to the secondary controller.  The secondary controller would operate physically 

independent of the primary controller to reduce the risk of damage when a fault occurred, 

thereby providing true redundancy.  Once the ability to switch between controllers was 

established the second objective was to synchronize both controllers to prevent a random 

phase shift when a fault occurred.  The third and final objective was to enable the 

secondary controller to begin running with the same internal values as the primary 

controller had when the fault was detected in order to minimize any disturbance to the 

VSI output. 

The hardware in this project consisted of two Virtex II development kit FPGAs 

connected to customized interface cards, a three phase rectifier, an LC filter, and a 

resistive load.  The Virtex II FPGA contained the design software that produced the six 

modulated output signals that went into the six step three phase rectifier.  The interface 

card allowed the two FPGAs to pass information to each other as well as connect with the 

other hardware components.  The three phase rectifier connected to an LC filter with the 

capacitors in a Delta configuration in order to run a load of three resistors in a Delta 

configuration.  Measurements of vab, vbc, ia, and ib were then fed back into the FPGA via 
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the interface card in order to produce the hardware configuration of the voltage source 

inverter with a closed loop control system shown in Figure 1.   
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Figure 1.   Diagram of Hardware Configuration. 

The controller software had been previously designed in the NPS power lab using 

XILINX blocks to create the VHDL code for the FPGA and SIMULINK blocks to model 

the behavior of the hardware components external to the FPGA and interface boards in 

order to produce the computer simulations.  There were several software additions and 

modifications that had to be made to the controller design in order to achieve the research 

objectives.  The software used to create the redundant controller architecture consisted of 

a primary and a secondary controller block, an A to D converter block that read the 

feedback from the system, and a switching unit subsystem that switched between 

controllers when a fault was sensed.  SIMULINK blocks were used to simulate the 

behavior of the three phase rectifier, LC filter, and resistive load in order to produce 

predictive simulation results prior to loading the software on the FPGAs.  The software 

picture of the final design is shown in Figure 2.   
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Figure 2.   XILINX Model of the Redundant Controller Design. 

The first configuration of the redundant controller design only passed the fault 

signal from the primary to the secondary controller, which produced considerable 

disturbance in both the phase and amplitude of the VSI output during the switching event.  

Once the ability to switch between the two controllers had been achieved the next step 

was to try and eliminate the disturbance in the output due to the switching.  The solution 

to eliminate the random phase shift observed in the output was to send a synchronization 

signal from the primary controller to the secondary controller.  The synchronization 

signal stopped the internal values of the two controllers from drifting apart over time due 

to the independent clocks on both boards.  This additional communication between the 

two controllers produced an output that maintained its phase during the switching event 

but still had amplitude disturbance. 
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The solution for minimizing the amplitude disturbance was to pass the integrator 

values in the PI control loops of the primary controller to the secondary controller so they 

could be used as initial conditions for its integrator values when a fault occurred.  Until 

this point in the design it was necessary to keep the secondary controller’s integrator 

values set to zero to prevent it from coming online at some random point and potentially 

damaging the VSI.  However, keeping the integrator values at zero prior to sensing a fault 

in the system meant that the VSI output would have to start at zero and transition to 

steady state, which caused the disturbance in the amplitude of the output. 

The process of sending data between two physically independent FPGAs added 

an extra degree of difficulty to the solution.  In order to send a binary value out of the 

FPGA there had to be one FPGA pin assigned for each bit of the value.  Therefore, a 

solution to serialize and concatenate the bits of the four integrator values of the primary 

controller was developed.  This allowed the four values to be sent from the primary 

controller across a single bit output and received by the secondary controller by a single 

bit input.  Once the serialized data was in the secondary board it was deserialized into the 

four separate values through the deserializtion portion of the software and sent to the 

appropriate PI control blocks.  Both the simulated and experimental results of this design 

showed virtually no disturbance in the VSI output during the switching event when the 

synchronization signal and the serialized initial conditions were passed from the primary 

to the secondary controller. 

The VSI used in this thesis was designed using computer simulations that were 

then confirmed through experimental results at each stage of the research.  This thesis 

successfully showed the ability of a VSI to sense the failure of the primary controller and 

switch to the secondary controller without any disturbance in the voltage output.  

Achieving these objectives demonstrated the potential for the reliability of a VSI to be 

significantly improved through the implementation of operating standby redundant 

controller architecture.  Confirming the ability to seamlessly switch from one controller 

to another while the system was in operation provides a basis for further development of 

a robust redundant architecture for a VSI.  Some follow on research that would be 

required includes: 
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• Reducing the distortion in the VSI output due the gain values and noise in 

the hardware design. 

• Implementation of additional redundant components such as a four-switch 

pole inverter topology. 

As our world becomes increasingly dependent on technology, the need to power 

that technology with fewer interruptions is also increasing.  The redundancy design 

presented in this thesis was shown to be an effective approach to increase the power 

supply reliability in both military and civilian industry. 
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I. INTRODUCTION 

A. BACKGROUND 

This thesis was conducted to ascertain the feasibility of a strategy to develop a 

more reliable voltage source inverter (VSI) through operating standby redundant 

controller architecture.  The goal of this research was to determine and minimize the level 

of disturbance in the output of a VSI during a switching event from the primary to the 

redundant controller.  Both of the controllers in the VSI for this research were designed 

as closed loop space vector modulation controllers that contained an outer voltage 

Proportional-Integral (PI) control loop and an inner current PI control loop.  The research 

conducted on this VSI configuration used computer simulations and experimental 

measurements to demonstrate the ability of the system to switch from a primary to a 

secondary controller upon sensing a fault single.  The results of these experiments also 

demonstrated the amount of disturbance to the system output during the switching event 

showing its potential for use in mission critical systems for both the military and civilian 

industry. 

The reduction in the output disturbance was a critical component of this research.  

If the output disturbance during the switching event from the primary to the secondary 

controller could not be reduced to an acceptable level, the redundant controller 

architecture would not be a viable way to increase reliability.  According to MIL-STD-

1399 section 300A, the maximum departure voltage ranges from plus or minus 6 to plus 

or minus 2.5 percent, and the worst case voltage excursion from nominal user voltage 

ranges from plus or minus 20 to plus or minus 5.5 percent depending on the type of 

equipment being operated [1]. 

Increasing the reliability in electronic power supplies through redundant 

architectures has obvious benefits for combat or shipboard systems that need to stay 

online during critical operations.  Any vital electronic system used for either military or 

civilian applications would benefit from a power supply with increased reliability.   

Although this research only dealt with one redundant controller in order to demonstrate 
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the effects of the switching on the VSI output, the techniques in this research could also 

be applied to designs with additional redundant components.  All of the solutions in this 

thesis were first implemented and evaluated using computer simulations, and then 

physical models were built in order to produce real world experimental data. 

B. OBJECTIVES AND APPROACH 

The first objective of this thesis was to design a voltage source inverter with a 

primary and secondary controller that had a fault signal to simulate a failure in the 

primary controller.  When the fault was detected the system would automatically switch 

from the primary to the secondary controller.  The secondary controller would operate 

physically independent of the primary controller to reduce the risk of damage when a 

fault occurred, thereby providing true redundancy.  Once the ability to switch between 

controllers was established the second objective was to synchronize both controllers to 

prevent a random phase shift when a fault occurred.  The third and final objective was to 

enable the secondary controller to begin running with the same internal values as the 

primary controller had when the fault was detected in order to minimize any disturbance 

to the VSI output. 

The basic design layout for this thesis to achieve all of the objectives is shown in 

Figure 3.  The controllers were loaded on two separate boards with three physical 

connections going from the primary to the secondary controller.  The first connection was 

to pass the fault signal, which would initialize the integrators of the secondary controller 

when the primary controller failed.  The fault signal was also sent from the primary 

controller to the switching unit in order to switch the output gate signals from the primary 

to the secondary controller.  Placing the controllers on separate boards with a fault signal 

connecting the primary controller, secondary controller, and switching unit achieved the 

first objective of the research.  The second connection sent a pulse signal to keep the 

internal values of the two controllers synchronized.  This connection from the primary to 

the secondary controller achieved the second objective.  The third connection was to pass 

the values of the primary controller’s integrators in order to provide a starting value for 

the secondary controller’s integrators.  This third connection from the primary to the 
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secondary controller achieved the third objective of the research by enabling the 

secondary controller to start with the same internal values that the primary controller had 

when the fault was detected. 

 

   Fault

Initial 
conditions

Theta S
ync

 

Figure 3.   Block Diagram of Redundant Controller VSI. 

 

The redundant controller design was built with two FPGAs programmed using 

XILINX System Generator and ISE foundation with a discrete algorithm representing the 

controller architecture shown in Figure 3.    XILINX blocks in SIMULINK were used to 

design the software that was loaded on the two FPGA boards which enabled the 

simulated behavior of the system to be observed prior to loading the software on the 

boards.  At each stage of the research the software simulation was run in SIMULINK, 

and the output voltage was observed.  Based on the simulated observation, the software 

was adjusted accordingly until it produced the desired behavior.  Once the simulation 
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results were acceptable the software was loaded in the FPGAs and experimental 

measurements were taken using oscilloscopes and Chipscope software from XILINX.  

The experimental results were then compared with the software simulations to evaluate 

any differences. 

C. RELATED WORK 

The issue of power source reliability has always been a subject of concern for 

power engineers, and there has been a great deal of research done on different methods of 

fault detection and redundancy to help increase reliability.  A paper presented in 1998 at 

the International Telecommunications Energy Conference showed evidence which 

demonstrated the advantages of using modules operating in parallel to achieve increased 

reliability in dc-ac inverter systems used in uninterrupted power supply systems [2].  Two 

different redundant configurations, a master-slave and a multi-master, were evaluated to 

determine the most reliable.  The master-slave configuration consisted of one central 

intelligence module (master) and several local intelligence modules (slaves) that could 

partly take control of a master failure.  The multi-master configuration was designed with 

all of the modules as independent and equal with full digital control.  The multi-master 

configuration was mathematically shown to be more reliable than the master-slave due to 

the dependence of all the local intelligence modules on the one centralized master.  

Therefore, the greater the level of dependency in a redundant inverter system the less 

reliability the system will have. 

Another important issue related to redundancy is the ability to identify and detect 

the fault modes of an inverter system in order to properly implement the redundant 

architecture.  One such paper explored various fault modes of a voltage-fed Pulse Width 

Modulation (PWM) inverter system [3].  This research showed an alternative method for 

increasing reliability in a system as well as the complexity involved in trying to identify 

specific faults in a system.  While it did not address redundant applications, it did 

demonstrate how the proper detection of a fault in an inverter could help increase 

reliability by allowing the system to compensate for the fault and operate safely in a 

degraded mode.  An advantage redundant architecture has over fault compensation is the 
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ability to simply shut down the affected component and bring the redundant component 

online to avoid running the system in a degraded state. 

Achieving increased reliability through redundant architectures is also being 

actively researched for the civilian process industries.  A paper concerning reliability of 

different megawatt drive concepts also discussed some optional redundant designs for a 

VSI [4].  The redundant approach for that research was to create multiple redundant 

cellular structures of the Insulated Gate Bipolar Transistor (IGBT) building blocks of the 

VSI. 

These papers on related reliability topics are just a few examples of how diverse 

this research is in the field of power electronics.  The approach taken in this thesis was 

based on the design concepts presented in reference [5].  In that paper an in depth 

analysis of the reliability of two different redundant inverter topologies were compared.   

The redundant four-switch-pole topology was determined to be more reliable than the 

alternative of a redundant two-switch pole topology.  The concept of placing the four-

switch-pole inverter in the operating standby redundant controller design was then 

presented.  The block diagram of overall design is shown in Figure 4.   
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Figure 4.   Controller Architecture for Operating Standby Redundancy with 
Four-Switch Pole Inverter Topology [5]. 

This thesis took the first steps toward determining the validity of this design by 

showing the level of disturbance in the VSI output produced from switching to the 

redundant controller when the primary controller failed.  Developing an operating 

standby redundant controller architecture that would produce little to no disturbance in 

the output of the VSI was necessary to achieve before this design could be explored 

further.  For this research a regular three phase inverter topology without any switching 

redundancy was used in order to specifically focus on the controller redundancy.  

D. RELIABILITY ANALYSIS 

The primary reason for this research was to make a VSI more reliable through the 

addition of a redundant controller.  Therefore, the affects of the additional components on 

the overall reliability of a VSI should first be quantified.  The potential increase in 

reliability for the VSI can be demonstrated by determining the reliability of each 



 7

additional component and how the set up of those components affect the overall system 

using reference [6].  In this thesis the VSI had an additional controller placed in parallel 

to the original controller, and that parallel configuration was then placed in series with a 

switching unit.  In order to calculate reliability it is first necessary to define the failure 

rate (λ ), which is shown in equation (1.1).  Reliability as a function of time is then 

expressed by equation (1.2), which produces a value greater than 0 and less than 1. 

 Number of failures
Total operating hours

λ =  (1.1) 

 

 ( ) tR t e λ−=  (1.2) 

Since the failure of both controllers is required for the system to fail, the primary 

and secondary controllers are considered to be running in parallel when calculating the 

reliability of the system.  Equation (1.3) shows the calculation of components in parallel 

with different reliability values, where n represents the number of components in parallel.  

Equation (1.4) is a modification of equation (1.3) to represent when the reliability of each 

component is equal.  The reliability of components operating in series is shown in 

equation (1.5), where n represents the number of components in series.  Based on these 

equations the change in reliability from a single controller (Rcontr) to a redundant 

configuration with a second controller that has the same reliability and a switching unit in 

series with a reliability of (Rsu) can be expressed by equation (1.6).  

 

 1 21 (1 )(1 ).....(1 )parallel nR R R R= − − − −  (1.3) 

 

 1 (1 )n
parallelR R= − −  (1.4) 

 

 1 2( )( ).....( )series nR R R R=  (1.5) 

 

 2[1 (1 ) ]Total su contrR R R= − −  (1.6) 
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From equation (1.6) it can be shown that the reliability of the VSI has the 

potential to be significantly increased by placing a redundant controller in parallel with 

the primary controller.  However, the reliability of the system also has the potential to be 

decreased based on the reliability of the switching unit.  These equations demonstrate the 

trade-offs that must be considered when using redundant components to increase 

reliability. 

E. THESIS ORGANIZATION 

The following chapters of this thesis are laid out to provide a clear understanding 

of what was used in the design process and how the research was conducted.    Chapter II 

gives a detailed description of the software for the closed loop controller used as the 

foundation for both the primary and secondary controllers in the system.  Chapter III 

describes the hardware components that were chosen for the design and how they 

interacted.  Chapter IV discusses the software design used to produce the basic redundant 

controller architecture that achieved the first objective of the research.  Chapter IV also 

provides the simulated and experimental results of that design.  Chapter V presents the 

approach used to synchronize the internal values of the two controllers in order to 

eliminate the phase shift in the VSI output during the switching event which achieved the 

second objective of the research.  The simulated and experimental results for that design 

are also provided in the chapter.  Chapter VI presents the design used to achieve the third 

and final objective of the research along with the simulated and experimental results that 

demonstrated the ability of the design to switch with negligible disturbance.  Finally, 

Chapter VII presents the conclusions made based on all the simulated and experimental 

results of the voltage source inverter designs.  This chapter also discusses the potential 

for follow on work based on this research. 
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II. CONTROLLER CONFIGURATION 

The approach used to achieve the goals for this thesis was based on the controller 

design chosen to be implemented in the VSI.  Both of the controllers in the VSI for this 

research were based on software that had been previously designed in the NPS power lab 

to use space vector modulation to modulate the six transistor switches of the three phase 

rectifier [7].  The closed loop configuration of the controllers contained an outer voltage 

PI control loop and an inner current PI control loop.  The software was designed using 

the XILINX block set to produce this type of controller and SIMULINK blocks to model 

the behavior of the hardware components external to the FPGA and interface boards.  

The XILINX blocks were software additions to SIMULINK that generate the VHDL 

code required to load the design on the FPGA while the SIMULINK blocks provided a 

mathematical representation of the hardware in order to produce computer generated 

simulations of the system.  The following sections give a breakdown of the basic 

controller software design along with the mathematical SIMULINK design that was used 

to implement the redundant controller architecture simulations for this thesis.  For the 

purposes of this paper, the superscripts e and s represent the synchronous and stationary 

frames respectively, the subscripts q and d represent the q and d axes, and the subscripts 

a, b, and c represent the three phases of the voltage and current values. 

A. BASIC CONTROLLER DESIGN 

The basic design of the controller was the foundation that all of the other software 

components in this thesis were designed around.  This basic configuration was then 

modified to produce an efficient redundant architecture with a primary controller and one 

redundant secondary controller.  In the design of the closed loop controller the values for 

the two synchronous frame reference phase voltages (Ve
qref and Ve

dref) were set to 50 

volts and 0 volts respectively by using two constants from the XILINX block library.  

The controller worked by comparing the reference values to the voltage feedback values 

in the synchronous frame and sending the results into the first PI controller.  The first PI 

controller then produced reference values for the currents that were compared to the 
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current feedback values in the synchronous frame and sent into the second PI controller.  

The outputs of the second PI controller were then converted from the synchronous to the 

stationary frame and sent into the space vector modulation block.  The space vector 

modulation block took the final voltage reference values and translated them into gate 

signals to be read by the three phase rectifier.  Finally the output of the hardware 

configuration was sent back into the A to D converter to close the loop on the control 

system.  This basic operation for both controllers is laid out in the block diagram in 

Figure 5.   

A 
to

 D
 c

on
ve

rs
io

n

 

Figure 5.   Basic Space Vector Modulation Controller Configuration. 

B. THETA DESIGN 

The rate of theta was also designed into the software using the XILINX block 

library.    The basic design for the theta value was made up of a constant value of 2π  

multiplied by the frequency of the system (100 Hz) multiplied by the clock period of the 

system (40ns).  This constant value was sampled every clock period and sent into an 

accumulator.  The accumulator output was then sent back into a rational block that was 

set to trigger the accumulator to reset when the output value reached 2π .  The output of 

the theta block was then converted from a value of 0 to 2π  to a value of 0 to 210 in order 

to be implemented in the rest of the code.  The XILINX configuration used to produce 

the theta value for the system is shown in Figure 6.   
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Figure 6.   Theta Software Design. 

C. FRAME TRANSFORMATIONS 

Since the controller used space vector modulation, it was necessary to convert the 

feedback voltages into the qd frame.  The value from the theta design was used in the 

transformation blocks to convert the Vab, Vbc, Ia, and Ib feedback values produced by the 

A to D converter to the synchronous frame values as shown in Figure 5.  The voltage 

values converted into the synchronous frame (Ve
q and Ve

d) were then subtracted from the 

set reference values and sent into the voltage PI control block.  Similarly the current 

values converted into the synchronous frame (Ie
q and Ie

d) were subtracted from the 

reference currents produced by the voltage PI control block and sent to the current PI 

control block.  The final frame conversion block took the new Ve
q and Ve

d values 

produced by the current PI control block and converted them from the synchronous to the 

stationary frame. 

The equations used to build the abc to qde transformation blocks in the code were 

derived from equations (2.1) and (2.2), which were taken from reference [8]. 

 ( )2 2 2cos cos cos
3 3 3q a b cf f f fπ πθ θ θ⎡ ⎤⎛ ⎞ ⎛ ⎞= + − + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.1) 

 ( )2 2 2sin sin sin
3 3 3d a b cf f f fπ πθ θ θ⎡ ⎤⎛ ⎞ ⎛ ⎞= + − + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.2) 

Using the fact that 0a b cv v v+ + =  and i 0a b ci i+ + =  in three phase configurations 

allowed fc to be substituted in equations (2.1) and (2.2) yielding the following equations. 

 ( ) ( )2 2 2cos cos cos
3 3 3q a b a bf f f f fπ πθ θ θ⎡ ⎤⎛ ⎞ ⎛ ⎞= + − + − − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.3) 
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 ( ) ( )2 2 2sin sin sin
3 3 3d a b a bf f f f fπ πθ θ θ⎡ ⎤⎛ ⎞ ⎛ ⎞= + − + − − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.4) 

These equations can be further simplified to yield 

 ( )2 2 2 2cos cos cos cos
3 3 3 3q a bf f fπ π πθ θ θ θ
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + − − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.5) 

 ( )2 2 2 2sin sin sin sin
3 3 3 3d a bf f fπ π πθ θ θ θ
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + − − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.6) 

A final simplification using trigonometric identities yields the equations used to 

design the transformation block for the currents in the software. 

 ( ) ( )( )2 sin sin33q a bi i iπθ θ= + +  (2.7) 

 ( )2 cos cos
3 3d a bi i iπθ θ⎛ ⎞⎛ ⎞= − + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (2.8) 

The XILINX block software that corresponds to equations (2.7) and (2.8) is 

shown in Figure 7.   
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Figure 7.   Current Transformation Block. 

The line-to-line voltage transformations were derived by using the fact that 

ab a bv v v= −  and ( )bc b c b a bv v v v v v= − = − − −  can be manipulated to produce  
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2 1
3 3a ab bcv v v= +  and 1 1

3 3b ab bcv v v= − +  which, when substituted in equations (2.7) and 

(2.8) yields 

 ( ) ( )2 2 sin sin sin sin
3 33 3q ab bc ab bcf f f f fπ πθ θ θ θ⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (2.9) 

 ( ) ( )2 2 cos cos cos cos
3 33 3q ab bc ab bcf f f f fπ πθ θ θ θ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + − + + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (2.10) 

These equations can be simplified further to produce 

 ( ) ( )2 2sin sin sin sin
3 33 3q ab bcf f fπ πθ θ θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + − + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 (2.11) 

 ( ) ( )2 2cos cos cos cos
3 33 3q ab bcf f fπ πθ θ θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + + − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 (2.12) 

A final simplification using trigonometric identities yields the equations used to 

design the transformation block for the voltages in the software 

 ( )2 cos sin
3 6q ab bcv v v πθ θ⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (2.13) 

 ( )2 sin cos
3 6q ab bcv v v πθ θ⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (2.14) 

The XILINX block software that corresponds to equations (2.13) and (2.14) is 

shown in Figure 8.   
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Figure 8.   Voltage Transformation Block. 
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The transformation block that transforms the voltage values from the synchronous 

to the stationary frame was designed based on the following equation from reference [8]. 

 

 
( ) ( )
( ) ( )

cos sin
sin cos

qs e e qe

ds e e de

v v
v v

θ θ
θ θ

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

 (2.15) 

 The XILINX representation of equation (2.15) is shown in Figure 9.   
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Figure 9.   Synchronous to Stationary Frame Transformation. 

 

D. PI CONTROLLERS 
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Figure 10.   Software for Vq PI Control Block. 

All four PI controllers had the same basic design which consisted of the reference 

value being subtracted by the corresponding measured value.  That value was then sent to 

two separate gain operators to produce a product and an integrator value.  The integrator 
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value was sent into an accumulator, and the accumulated value was summed with the 

product value to produce the appropriate reference output.  The controller software had a 

PI control block with the same design for each of the four variables: Vq, Vd, Iq, Id.  The 

basic design of all four PI controllers is represented in this section by the Vq PI control 

block shown in Figure 10.   

E. SPACE VECTOR MODULATION 

The controller design selected for this thesis was based on space vector 

modulation to produce the output gate signals for each controller that would modulate the 

six IGBTs in the three phase rectifier based on the input of the qd voltage values in the 

stationary qd frame presented in Figure 9.  The qd values in the stationary frame were 

converted to Polar coordinates before being sent into the space vector modulation block.  

The XILINX block configuration that produced the space vector modulation for this 

controller is presented in Figure 11.   
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Figure 11.   XILINX Block Software for Space Vector Modulation. 

The input magnitude and the theta value, that was converted into a binary value, 

was sent into a sample and hold block that was then sent into an MCode block that 
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selected the appropriate sector of the space vector modulation hexagon.  The sector 

selection outputs were then sent into the modulation block.  The additional XILINX 

blocks in the figure produce the duty cycles that are also sent into the modulation block 

along with the ramp input.  The inputs to the modulation block were sent through 

numerous arithmetic and logic blocks that produced the three gate signals for the 

controller [9].  The full set of notes that provide a detailed explanation of the algorithms 

that describe how the sample and hold block and the modulation block work together 

with the rest of the design is located in Appendix A. 

F. ANALOG TO DIGITAL CONVERTER 

The A to D converter for the controller was designed with XILINX blocks to take 

in the voltage and current feedback signals from the SIMULINK blocks that provided a 

mathematical representation of real world hardware.  While the XILINX blocks were 

used to create the software code that could be loaded on an FPGA, the SIMULINK 

blocks were used to represent real world components outside of an FPGA in order to 

create accurate simulations prior to loading the software on a board. The SIMULINK 

blocks were also used as pulse generators to simulate the internal clocks on a board.  In 

order for the XILINX blocks to read the SIMULINK blocks in the software the 

SIMULINK blocks must be sent into one of the yellow input blocks seen in Figure 12.    

The data into an input block could be a Boolean, signed (2’s complement), or unsigned 

data.  However, the input block had to assign one FPGA pin for every data bit.  The grey 

output blocks represent outputs that did not have an FPGA output pin assigned and were 

used to send information back to the SIMULINK blocks. Once the SIMULINK data was 

read into the XINLINX blocks of the A to D converter, the timing from the simulated 

clock values were used to select the two current and two voltage values that were then 

sent into the controller.  The multiplication blocks prior to the output pins were used to 

offset any scaling of the feedback signals from the hardware when the software was 

actually loaded on the FPGA. 
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Figure 12.   XILINX A to D Converter Design. 

G. SIMULATED HARDWARE DESIGN 

The software design in SIMULINK that was used to mathematically simulate the 

external hardware of the VSI in order to create a computer generated output prior to 

loading the software on the FPGA is shown in Figure 13.  The modulated gate signals 

from the control were sent into this block and mathematically manipulated to produce an 

output that simulated the gate signals going through a LC filter, with the capacitors in a 

wye configuration and an LR load in a wye configuration.  The values of the simulated 

filter inductors and capacitors were 350 Hµ  and 60 Fµ  respectively.  The values of the 

simulated load resistors were 20Ω .  Since the hardware design for this research only 

used a resistive load, the inductor values in the simulated load were set at 100µΗ  to 

account for the inductance in the wires of the hardware. 
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Figure 13.   Simulated Hardware Design. 

H. CHIPSCOPE 

A Chipscope interface block was also a previously designed piece of software that 

was incorporated into the research design but was not a direct component of the 

controller.  The Chipscope interface block was taken directly from a buck converter lab 

for EC4150 at NPS [10] and is shown in Figure 14.    The software was chosen because it 

was designed to provide two switches that could be controlled through the Chipscope 

program from XILINX that was loaded on the computer.  The Chipscope interface 

software was implemented as a remote computer based switch to help prevent 

unnecessary physical contact with the boards that might have lead to unintentional 

damage to the hardware. The XILINX simulation multiplexer blocks also allowed the 

Chipscope interface block to operate the step function that was used for the switching 

event in the computer simulations as well as the computer switches in the experimental 

tests.  One other feature provided by the software in the Chipscope interface block was 

the ability to read four internal signals and display them in Chipscope.  This feature was 

also taken from the buck converter lab software to provide the ability to take internal  
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measurements of the software without the need to send them to external pins on the 

FPGA.  The code that was used in the black box block of the software is listed in 

Appendix F. 
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Figure 14.   Chipscope Interface Block [10]. 

 

I. CHAPTER SUMMARY 

This chapter presented the XILINX block components of the basic controller 

design that were used to implement the redundant controller architecture in this research.  

The controller was a closed loop designed with an outer voltage PI control loop and an 

inner current PI control loop.  The controller used space vector modulation to modulate 

its output gate signals.  This chapter also showed the way in which SIMULINK and 

XILINX blocks were used to develop computer simulations that could then be directly 

transferred to an FPGA for experimental testing.  The next chapter presents the hardware 

configuration that was set up to conduct the experimental testing of the software design. 
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III. HARDWARE DESIGN 

The next step in the research process was to select hardware components that 

could be used to conduct real world experiments in order to collect experimental data 

from the redundant controller design to compare with computer simulated results.  The 

hardware in this project consisted of two Virtex II development kit FPGAs connected to 

customized interface cards, a three phase rectifier, an LC filter, and a resistive load.  The 

Virtex II FPGA contained the design software that produced the six modulated output 

signals that went into the six step inverter.  The interface card, which included an A/D 

converter and digital I/O ports, allowed the FPGA to connect with the six step three phase 

rectifier from SEMIKRON.  The rectifier then connected to an LC filter with the 

capacitors in a Delta configuration in order to run a load of three resistors in a Delta 

configuration.  Measurements of vab, vbc, ia, and ib were then fed back into the FPGA via 

the interface card in order to produce a voltage source inverter with a closed loop control 

system as shown in Figure 15.   

 

Lfa

RL RL

RL

Cf

vbc 

vca

Cf

Cf

Lfb

Lfc
vab

Two Custom interface 
cards

(A/D converters and 
digital I/O)

A+

A-

B+

B-

C+

C- brake

A+ A- B+ B- C+ C- brake

Current Feedback (ia)

+

vdc

-

Voltage Feedback (vbc)

Two XILINX Virtex II FPGAs

3 
ph

as
e

A
C

 in
pu

t

+
Vab_in

-

Current Feedback (ib)

Voltage Feedback (vab)

 

Figure 15.   Diagram of the Hardware Configuration. 
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A. FPGA 

 

Figure 16.   Virtex II High Level Block Diagram [11]. 
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Two Virtex II FPGA boards were used in this research to design the hardware 

configuration used to collect the experimental data.  The boards had been previously 

purchased and used for other NPS research because of the versatility provided in the 

development and verification of FPGA designs.  The Virtex II provided an Indexed 

Sequential Processor (ISP) Programmable Read Only Memory (PROM) along with a 

Joint Test Action Group (JTAG) connector that allowed direct configuration of the FPGA 

from the computer [11].  A high level block diagram of the FPGA from the Virtex II 

Reference Board User’s Guide is shown in Figure 16.   

Using the FPGA to design the controller instead of solid state components 

provided greater flexibility in making changes to the design along with the ability to load 

different versions of the design without creating additional boards.  The primary board 

held the software for the primary controller and the switching unit, and the second board 

held the software for the secondary controller only.  The primary FPGA was also used to 

send the outputs of the selected controller to the three phase rectifier through the 

switching software located on the primary FPGA.  All of the information passed from the 

primary to the secondary controller had to be sent externally through the interface cards 

connected to the FPGAs.  Likewise the output values of the secondary controller had to 

be sent back into the primary board externally to the switching unit so it could be passed 

to the rectifier when a fault occurred.  The three modulated outputs from the primary 

controller and the fault signal from the primary controller were the only information 

signals passed to the switching unit internally during the experiment.  If the design were 

to be put into practical use, the switching unit should be loaded on its own separate board 

to avoid a potential failure in the switching unit in the event that the primary controller 

failure somehow caused damage to the board.  However, due to resource limitations only 

two boards were available, and having the switching unit on the primary board did not 

have an effect on the measurements of the switching disturbance for the purposes of the 

experimental research.  The product description for the Virtex II board used in the 

experiments is located in Appendix B.  A picture of the Virtex II board used for the 

experiments is shown in Figure 17.   



 24

 

Figure 17.   Virtex-II Development Kit. 

 

B. CUSTOMIZED INTERFACE BOARD 

The interface board was specifically designed with I/O ports, an A to D converter, 

and four voltage level shifters to interact with the Virtex II board configuration used in 

this thesis and to provide physical connections between the FPGAs and the other 

hardware devices in the design.  The interface boards connected directly to the pins of the 

FPGAs.  Jumper connections were also connected between the two boards to send the 5V 

supply from the interface to the Virtex II boards.  The interface board connected to the 

Virtex II development kit with the 5V supply connected is shown in Figure 18.  The 

layout of the interface board that was created using the PCB123 design software package 

is shown in Appendix C. 
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Figure 18.   Customized Interface Board Connected to the FPGA. 

 

Six BNC connections on the primary interface board were used to send out the 

gate signals from the selected controller to the six step three phase rectifier.  Another 

BNC connector on the primary board was used to send out the fault signal to a BNC port 

on the secondary controller.  Two more BNC connections on the primary board were 

used to send the theta synchronization signal and the serialized initial conditions out to 

the secondary board. That data was then sent into the secondary board through two 

resistor inputs.  On the secondary interface board three BNC connections were used to 

send the gate signals of the secondary controller out to the primary board.  Those signals 

were then sent into three input resistor connections on the primary board in order to be 

read by the switching unit in the primary FPGA. 
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The four feedback values from the VSI were sent into four additional BNC ports 

on each board that connected to the A to D converter to complete the closed control loop 

for each controller.  Each controller also had a BNC that was used as an emergency 

manual shut off switch.  The primary and secondary boards connected together are shown 

in Figure 19.    This figure also shows the XILINX parallel cable connected to the 

primary board that was used to load the software through the JTAG port on the FPGA 

directly from the computer.  The specific I/O ports and their corresponding FPGA pin 

connections in the software are covered in detail in the following chapters. 

 

 

Figure 19.   The Primary and Secondary Controller Boards Connected 
Together. 
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C. THREE PHASE RECTIFIER 

 

Figure 20.   Three Phase Rectifier plus Inverter with Brake Chopper from 
SEMIKRON. 

The SEMITEACH-IGBT used as the six step three phase inverter for the 

hardware configuration in this thesis is shown in Figure 20.  The SEMITEACH is a 

multi-function IGBT converter with a brake chopper/rectifier.  It is built with a 

transparent casing that allowed the operator to view the internal components.  It also had 

several safety features which made it an ideal piece of equipment to be used in the 

laboratory environment [12].  Further technical specification for the SEMITEACH-IGBT 

is listed in Appendix D.  The six gate signal outputs from the primary controller were 

sent into the six BNC connectors on the side of the SEMITEACH box that corresponded 

to the positive and negative gates for the three phases of the rectifier.  A three phase AC 

power supply was applied to box through the three banana connectors on top of the box 
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centered toward the front.  Finally the three banana connectors centered in the top of the 

box produced the output of the three phase rectifier that was sent to the LC filter and on 

to the resistive load. 

D. LOAD 

 

Figure 21.   LC Filter and Resistive Load Setup. 

The output of the three phase rectifier was sent out to three inductors connected to 

a delta configuration of capacitors to produce an LC filter.  The value of the filter 

capacitors and the load resistors were adjusted to be equal to the computer simulated 

values.  The inductors and capacitors of the LC filter had a value of 350µΗ  and 20 Fµ  

respectively.  The LC filter limited the current and voltage in the time domain to produce 

a low pass filter that filtered out the modulation energy of the output and allowed the 100 

Hz sine wave through before going into the load.  Three 60Ω  resistors in a delta 
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configuration were then used for the VSI load and the line to line voltage output across 

the resistors was measured for the experimental results.  The LC filter and resistive load 

configuration in the hardware are shown in Figure 21.   

E. HARDAWARE SETUP 

 

Figure 22.   The Complete Hardware Design. 

The components described in the preceding sections were finally implemented in 

the hardware design shown in Figure 22.  This picture of the overall hardware design 

shows the hardware components described in the previous sections as well as the AC 

power supply for the three phase rectifier block, the DC power supply for the interface 

board, and the voltage and current probes used to provide the feedback signals for the 

closed loop design.  Using this hardware configuration designed around the two FPGAs 

provided the ability to develop and test multiple software solutions for the redundant 
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architecture without making any major changes to the hardware components.  This ability 

saved both time and resources throughout the research and design process. 

F. CHAPTER SUMMARY 

This chapter described each of the hardware components used in the design to 

collect experimental data.  The ability to physically separate the primary and the 

secondary controllers was vital to the experiments in order to ensure true redundancy was 

maintained in the design.  Without physically separating the two controllers it would not 

have been possible to adequately demonstrate the data transfer necessary to eliminate the 

disturbance of the VSI output during the switching event.  The next chapter describes the 

software design that was developed to achieve the first objective of the research which 

was to enable the VSI to switch from a primary controller to a secondary controller when 

a fault was detected.  Each aspect of the redundant design is identified along with the 

FPGA and interface board pins assigned to the inputs and outputs of the controllers.  The 

simulated and experimental results are then presented to confirm the design operated 

properly. 
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IV. INDEPENDENT REDUNDANT CONTROLLER 
ARCHITECTURE 

This chapter discusses the original redundant controller design developed to 

achieve the first objective of this research to have a VSI with an independently operating 

redundant controller that would sense a fault in the primary controller and switch.  The 

software used to create the redundant controller architecture consisted of a primary and a 

secondary controller block, an A to D converter block that read the feedback from the 

system, and a switching unit subsystem that switched between controllers when a fault 

was sensed.  SIMULINK blocks were used to simulate the behavior of the three phase 

rectifier, LC filter, and resistive load in order to produce predictive simulation results 

prior to loading the software on the FPGAs.  Finally, a Chipscope interface block was 

added to the software design which was able to set the fault signal during the computer 

simulations.  The purpose for this additional software was to allow the operator to trigger 

the fault and shut off switches through the computer during the experimental tests rather 

than using physical switches. 

In order to design the VSI with a redundant controller architecture the basic 

controller design discussed in Chapter II was given several modifications to enable it to 

sense input data as well as pass output data to the other elements of the design.  The 

ability of the primary controller to communicate with the secondary controller and the 

switching unit were the first steps that had to be achieved.  In the initial stages of the 

research one design was developed for both controllers which made it possible for the 

same code to be loaded on each board.  However, as the design evolved to incorporate the 

passing of more data between the controllers it was not possible to keep the software 

exactly the same, and two separate configurations had to be developed. 

The simulation software for the basic redundant controller design, which included 

the XILINX blocks that generated the code for the FPGA and the SIMULINK blocks that 

simulated the behavior of the external elements in the hardware, is shown in Figure 23.  

This configuration was used to collect simulated results in order to predict how the 

redundant controller architecture would behave in the real world system.  The results 
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obtained from this configuration gave reasonable estimates of the actual system’s 

behavior and provided a high degree of confidence and predictability when moving to the 

real world experiments. 
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Figure 23.   XILINX Model of the Redundant Controller System with Both 
Controllers Operating Independently. 

The following sections address the issues considered during the initial stages of 

the design process and how the basic software components discussed in Chapter II were 

modified for this research.  They also describe the new components that were developed 

and how all of the software elements interacted to create the redundant controller 

architecture. 



 33

A. FAULT SIGNAL 

Although fault detection was an element of this research, it was not necessary to 

design the system to detect multiple types of specific faults in the controller in order to 

measure the disturbance of the output during the switching event.  Therefore, the 

software was designed to simply read a high/low fault signal in the primary controller.  

The fault signal had the same input and output port assignments on both boards, and the 

input port on the interface card that read the fault signal was designed as an inverter.  

Therefore, when value of the fault signal is mentioned in this thesis it refers to the value 

of the signal being sent into the primary FPGA which is the inverted value of the manual 

switch signal going into the interface card. 

The input port for the fault signal on the primary board was set up as a physical 

switch that could be used manually, and the input pin on the secondary interface card 

simply read the output from the primary interface card and inverted it before sending the 

signal into the secondary FPGA.  An emergency shut off switch was designed into both 

boards to provide an extra level of protection for the equipment.  The shut off switch was 

routed to the same BNC port on both interface cards.  On the primary controller board the 

manual shut off switch was designed to turn off all of the signals being sent to the 

switches in the switching unit, preventing any gate signals from going into the three 

phase rectifier.  The manual shut off switch on the primary controller board was also 

designed to send a signal that would reset the four PI accumulators of the primary 

controller.  The manual shut off switch on the secondary controller board was designed to 

independently reset the four PI accumulators of the secondary controller.  The physical 

input and output pins used for the fault signal and manual shut off switch on both boards 

are listed in Table 1.   
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Fault Signals Vertex II (FPGA Pins) Interface (BNC Ports) 

Input C4 U2 

Output T5 U46 

Emergency Shut Off D1 U1 

Table 1.   Fault Signal and Shut Off Switch Ports. 

Additional XILINX blocks were included to enable the design to use Chipscope 

to perform the switching event.  This addition was used to help reduce the risk of 

inadvertently damaging the boards by using the physical switches when collecting the 

experimental data.  The software used for the Chipscope switch was the same software 

described in Chapter II, which provided the ability to use switches and to take internal 

readings of the system without using additional FPGA pins.  Due to the fact that 

Chipscope could only be used through the XILINX parallel cable, the internal switches in 

the software could only be used on one board at a time.  Therefore, the switching event 

was controlled through the primary controller board during the experimental testing. 

1. Primary Controller 

The fault signal on the primary controller could either be detected by the signal on 

the manual input switch or by the internal switch created by the Chipscope software.  The 

fault signal was sent into the primary controller’s four PI control blocks, the switching 

unit, and the secondary controller’s four PI control blocks.  When the fault signal was 

low the accumulators in the primary controller were enabled and the switching unit 

selected the primary controller’s gate signals to be sent into the three phase rectifier.  The 

fault signal was also designed to be sent from the primary interface card to the secondary 

interface card, via a BNC cable, where it would be inverted to a high signal and sent into 

the secondary FPGA.  Therefore, the system would continue to run with the primary 

controller until the fault signal in the primary FPGA went high indicating a failure of the 

primary controller. 
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2. Secondary Controller 

Prior to a failure of the primary controller, the inverted fault signal going into the 

secondary FPGA kept the accumulators of the four PI controllers set to zero.  This 

ensured the secondary controller would not start at some arbitrary value when it took 

over.  When a fault was detected in the primary controller, the secondary PI controller’s 

accumulators were enabled, and the switching unit selected the gate signals of the 

secondary controller to be sent into the three phase rectifier.  The output pins of the three 

gate signals that were sent into the switching unit from the secondary controller are listed 

in Table 2.   

Secondary Gate Signals Vertex II (FPGA Pins) Interface (BNC Ports) 

SA N6 U47 

SB P6 U48 

SC P7 U49 

Table 2.   Gate Signal Outputs for the Secondary Controller. 

The ability of the secondary controller to accurately receive the fault signal from 

the primary controller and pass the output gate signals back to a switching unit was the 

first design requirement in creating the redundant controller architecture.  In order to 

achieve this goal, the next step was to design a switching unit that could receive the 

output data from both controllers and reliably switch from the primary to the secondary 

controller.  The next section discusses the switching unit design and how it managed the 

outputs of the two controllers to complete the systems redundant architecture. 

B. SWITCHING UNIT 

The switching unit design that determined which controller would be used by the 

voltage source inverter is shown in Figure 24.  The switching unit was designed to read 

the gate signals from both controllers, the fault signal from the primary controller and the 

emergency shut off signal.  The negative value of each gate signal input was created 

making a total of six signals from the primary and six signals from the secondary 
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controller.  Each gate signal from the primary and secondary controller were then sent to 

an AND logic gate along with the emergency shut off signal.  The subsequent six values 

of each controller were sent to six individual switches that were designed to switch from 

the primary to the secondary controller values when the fault signal went high.  The 

switching block then sent out the positive and negative values of the selected controller to 

the selected FPGA pins. 
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Figure 24.   Switching Unit Software. 

The values from the switching unit were sent from the FPGA pins to the BNC 

ports on the interface card which were then connected to the three phase rectifier.  The 

gate signal values from the software and the corresponding FPGA and BNC connections 

are listed in Table 3.   



 37

Switching Unit Outputs FPGA Pins BNC Ports 

A+ C16 U38 

A- D16 U39 

B+ E13 U40 

B- H13 U41 

C+ H14 U42 

C- H15 U43 

Table 3.   Gate Signal Ports on the Primary Board. 

At this point the system was able to sense a fault in the primary controller and 

switch to a secondary controller without turning the system off which achieved the first 

research objective. 

C. SOFTWARE ADDITIONS FOR EXPERIMENTAL TESTING 

This section describes the software components that were not necessary for the 

redundant controller operations but were added to assist in the experimental 

measurements.  A switching control subsystem was used in the experimental testing of 

the design to enable multiple measurements of a specific configuration to be properly 

compared.  The switching events for the computer simulated results were able to be 

controlled by a simple step function that could be selected to switch at the same set time 

for multiple measurements.  However, the switching event for the experimental results 

was triggered by an actual fault switch that was controlled by the operator.  A switching 

event initiated at random by an operator was not capable of occurring at the same point of 

the output twice.  Therefore, a second requirement, based on the value of theta was added 

to ensure that the fault signal that would trigger the switching event would always occur 

at the same point of the VSI output.  This block of code was only necessary to collect the 

experimental data that need to be compared, and would not be included in any practical 

design. 
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The XILINX block design of the switching control software is shown in Figure 

25.  While the fault switch signal was low, the register block remained enabled which 

allow a low fault signal to be sent out.  When the fault switch was activated by the 

operator, a high signal was sent into one input of the AND gate.  The high fault switch 

also sent a low signal into one of the OR gate inputs.  At this point the AND gate was still 

sending out a low signal, and the OR gate was still sending out a high signal to enable the 

register block.  Therefore, the fault output was still low.  The high fault output signal 

would not occur until a predetermined value of theta was also achieved.  When both the 

fault switch and the theta value were selected, a high signal was sent out to the register 

block which passed the high signal.  The high fault output signal was then sent back as a 

low signal into the second OR gate input which turned off the enable port and latched the 

high signal into the register.  Latching the fault sign prevented the theta value from 

affecting the switching event any further. 
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Figure 25.   Switching Control Software for Experimental Results. 

Another modification made to both the primary and the secondary controller at 

this stage of the research was a theta test point that would send a signal to an output pin 

on each board.  The addition to the theta software block that produced the test signal that 

was collected during the experimental testing is shown in Figure 26.  This test point was 

designed into the software to provide additional experimental data on the behavior of the 

theta values produced on each board.  The test pin software was designed to send out a 

signal that would produce a rising edge when the value of theta reached 5
3
π  and a falling 

edge when the theta accumulator reached 2π  and reset to 0. 
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Figure 26.   Theta Test Pin. 

The FPGA pin used for the theta test output and its corresponding interface board 

connection for both controllers is listed in Table 4.   

Theta Test Pins  FPGA Pins Interface Connection 

Test Output H4 U5 

Table 4.   Theta Test Pins. 

D. SIMULATED RESULTS 

Three measurements of a single phase of the simulated output when the VSI 

switched between two independently operating controllers with no synchronization is 

shown in Figure 27.  Only one phase is present on the graph in order to better see the 

disturbance produced by not having any synchronization between the primary and 

secondary controllers.  Since both controllers were operating in a single computer 

program the theta offset in the three measurements had to be added to the secondary 

controller manually to try and accurately simulate two physically separated clocks 

counting at slightly different rates.  The graph shows a period of about 0.08 seconds 

between the switching event and the secondary controller achieving steady state 

operations.  It is important to note that this disturbance time could be longer or shorter 

depending on the gain values chosen for the system.  The disturbance in the VSI output 

shown in the simulated results indicated the two main sources of the disturbance came 
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from the phase shift due to the internal theta values in each controller and the transit time 

required for the secondary controller to achieve steady state after the switching event 

occurred. 
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Figure 27.   Three Simulated VSI Outputs with Random Theta Values for the 
Secondary Controller with the Switching Event at 0.05 seconds. 

E. EXPERIMENTAL RESULTS 

The experimental results of the redundant system at this stage of development are 

shown in Figure 28.  The graph displays three separate measurements on top of each 

other which exhibit three separate, random phase shifts in the output of the VSI.  The 

graph also shows the major disturbance in the amplitude of the output while the 

secondary controller’s accumulators achieved steady state.  The behavior of the 

experimental VSI inverter output was very similar to the predicted behavior produced by 
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the simulated outputs.  The similarities of these two outputs provided a high level of 

confidence in the predictability of the computer simulation software used in this research. 

Both the simulated and experimental results show a significant disturbance in the 

amplitude and phase of the output during the switching event.  These results illustrated 

the need to develop the design further in order to produce an output that would meet 

military standards [1]. 
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Figure 28.   Three Single Phase Experimental VSI Output Measurements with 
No Synchronization of the Primary and Secondary Controllers’ Theta 

Values and the Switching Event at 0.05 seconds. 

Further confirmation that the phase shift in the output was due to the internal theta 

values of the two controllers drifting apart over time was provided by collecting 

experimental data from the theta test pins in the controllers.  The outputs of the theta test 

pins on the primary and secondary boards at a random point of operation are shown in 

Figure 29.  The solid blue and broken red graphs represent the primary and secondary 
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controllers’ theta values respectively.  The rising edge of these graphs indicate when the 

theta value of each controller reached 5
3
π , and the falling edge indicates when the theta 

values reached 2π  and reset.  The clear difference in these experimental results helped to 

verify the computer simulations predictions that the phase shift during the switching 

event was being caused by the variation in the two independently operating theta values 

of the controllers. 
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Figure 29.   Theta Pulses of the Two Controllers without Synchronization. 

F. CHAPTER SUMMARY 

This chapter provided a break down of the software design modifications made to 

both the primary and secondary controllers in order to produce a VSI with operating 

standby redundant controller architecture were both controllers operated independently of 

each other.  The simulated behavior of the redundant controller architecture presented in 
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this chapter made it possible to develop the software design more thoroughly prior to 

implementing it in the hardware.  The ability to see the computer generated behavior of 

the entire system was extremely beneficial in troubleshooting the software and guiding 

the design development.  The computer simulations of this design also provided 

information with which to compare the experimental measurements of the software when 

it was loaded in the FPGAs.  The next chapter discusses the design issues involved in 

eliminating the random phase shift of the VSI output during the switching event, and the 

solution that was implemented to achieve the second objective of this thesis. 
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V. PHASE SYNCHRONIZED REDUNDANT ARCHITECTURE 

This chapter presents the software solution developed to eliminate the random 

phase shift in the VSI output that was produced during the switching event with two 

independently operating controllers.  The modifications to the software of the primary 

and secondary controllers in order to synchronize the theta values are explained.  The 

computer simulations of the VSI output are then presented which predict the behavior of 

the design.  Finally the experimental results are displayed to confirm the real world 

operation of the new configuration. 

A. THETA SYNCHRONIZATIONS 

Once the system was able to effectively switch from the primary to the secondary 

controller it was necessary to attempt to minimize the disturbance of the system output 

during the switching event.  Theta synchronization was the first step in controlling the 

output of the secondary controller when the fault occurred.  Since the controllers were 

loaded on separate boards to help ensure greater reliability of the system during a failure 

of the primary controller, the theta values of each controller would slowly drift apart over 

time without some mechanism to keep them aligned.  This difference in the internal theta 

value of the two controllers would cause the output of the VSI to have a random phase 

shift when the system switched from the primary to the secondary controller.  Another 

issue that had to be considered was the fact that any information passed from one FPGA 

board to another would require the use of one output pin per bit of data. 

Since the theta value for each controller was designed to count from 0 to 2π  and 

then reset the accumulator back to zero, the theta values could remain synchronized by 

simply having a single pulse that would reset both theta accumulators at the same time.  It 

was also necessary to ensure that the synchronization between the primary and secondary 

values of theta would not continue after a fault was detected in order to maintain true 

redundancy.  This single pulse method was considered the best solution because it only 

required a single bit to pass the information needed to keep the theta value of both 

controllers synchronized. 
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1. Primary Controller 

The modification that was made in the theta block of the primary controller 

enabled it to pass the reset signal to the secondary controller before the fault was detected 

and stop passing the signal after the detection of the fault.  This modification is shown in 

Figure 30.  The reset pulse is sent to an AND logic gate with the inverted fault signal.  

Prior to a failure, the inverted fault signal remains high and the AND gate will pass the 

reset signal to the secondary controller keeping it synchronized with the primary 

controller theta value.  Once a failure in the primary controller is detected, the inverted 

fault signal will go low which will prevent the reset pulse from the primary controller 

from continuing to pass to the secondary controller’s theta block. 
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Figure 30.   Theta Synchronization Software for Primary Controller. 

2. Secondary Controller 

The design modifications to the secondary controller’s theta block are shown in 

Figure 31.   The secondary controller was designed to accept the reset pulse from the 

primary controller as well as continue to operate on its own once the pulse from the 

primary controller stopped being sent.  This was accomplished by bringing the reset 

signal from the primary controller into an OR logic gate with the secondary controllers 

reset signal.  Since the synchronization pulse was delivered at the end of every 2π  cycle, 

any difference in the theta values of the primary and secondary controllers during that 
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time would have been negligible.  Therefore the reset signals from the primary controller 

and the secondary controller would occur at the same time.  The OR logic gate in the 

design allows the theta software to continue to reset after the synchronization signal is 

discontinued due to the detection of a fault in the primary controller. 
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Figure 31.   Theta Synchronization Software for Secondary Controller. 

The input and output pins used to synchronize the theta values of the primary and 

secondary controllers are listed in Table 5.  The FPGA pin on the primary board sent the 

pulse signal to the primary interface board’s BNC connection listed in the table.  The 

primary interface board then sent the signal out to the secondary interface board’s BNC 

connection, which was then sent into the FPGA input pin on the secondary board listed in 

the table. 

Synchronization pins  FPGA Pins Interface Connection 

Primary output L5 U44 

Secondary input K3 R51 

Table 5.   Theta Synchronization Connections. 

B. SIMULATED RESULTS 

The theta offsets that were added to the secondary controller for the computer 

simulations in Chapter IV were taken out, which automatically synchronized the theta 
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values of the two controllers in the computer simulation.  The simulated result of what 

the VSI output should look like without any phase shift during the switching event is 

shown in Figure 32.  The fact that the theta values of the two controllers were identical 

because the simulation was run on one computer made it difficult to determine if the theta 

synchronization software was working.  However, the simulated result still provided an 

accurate output with which to compare the experimental results. 
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Figure 32.   Simulated VSI Output with the Theta Values Synchronized and the 
Switching Event at 0.05 seconds. 

 

C. EXPERIMENTAL RESULTS 

The experimental tests in this section confirmed that the theta synchronization 

software added to the design eliminated the phase shift to the VSI output during the 

switching event.  The three experimental results of the VSI output for the redundant 
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controller system with the theta synchronization pulse being sent from the primary to the 

secondary board are shown in Figure 33.  The switching control software was also 

implemented for this experimental test in order to properly show the ability of the VSI to 

maintain the same output phase during three separate failures of the primary controller. 
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Figure 33.   Three Single Phase Experimental VSI Output Measurements with 
Theta Synchronized and the Switching Event at 0.05 seconds. 

 

The behavior of all three experimental VSI inverter outputs was very similar to 

the predicted behavior produced by the computer simulation.  Although the disturbance 

in the amplitude was still present during the switching event, the random phase shift 

element of the disturbance had been removed by adding the theta synchronization pulse.  

Although this still did not meet the military standards for voltage disturbance in a power 

system [1], the ability to predict the disturbance in the output was a significant 

improvement over the previous design presented in Chapter IV. 
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A reevaluation of the theta test pins with the theta synchronization software 

implemented showed that the theta values of the two controllers remained identical prior 

to the switching event.  The output of the theta test pins prior to the primary controller 

failing is shown in Figure 34.  The solid blue line and the broken red line indicate the 

primary and secondary controller respectively.  The figure shows that the rising edge, 

which indicates when the theta values are 5
3
π , and the falling edge, which indicates 

when the theta values are 2π  were identical in both controllers before the primary 

controller failed. 
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Figure 34.   Theta Pulses of the Two Controllers with Synchronization Prior to 
the Fault. 

The output of the theta test pins twenty seconds after the primary controller failed 

is shown in Figure 35.  It is apparent from the two graphs that the theta values ceased to 

be synchronized once the secondary controller took over, and the two values slowly 
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began to drift apart after the fault occurred.  This experimental result also confirmed that 

the feature in the software that helped to ensure that the secondary controller would not 

be potentially corrupted by continuing to be connected to the primary controller after the 

failure was functioning properly. 
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Figure 35.   Theta Pulses of the Two Controllers with Synchronization Twenty 
Seconds After the Fault. 

D. CHAPTER SUMMARY 

This chapter discussed the software design modifications made to the theta 

software in the primary and secondary controllers to eliminate the random phase shift in 

the VSI output during the switching event.  The simulated results of the design predicted 

the pulse from the primary controller’s theta software would synchronize the theta values 

of the two controllers at the end of every 2π  cycle. Multiple experimental measurements 

provided confirmation that the theta synchronization software was able to eliminate the 
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phase shift in the output.  Additional confirmation that the theta synchronization was 

discontinued after the fault was detected was also provided from the theta test pins 

located on both boards.  This experimental information helped to confirm that the 

redundancy of the system was being maintained.  The next chapter discusses the design 

issues involved in passing initial condition values to the four PI control blocks from the 

primary controller to the four PI control blocks of the secondary controller to eliminate 

the drop in the amplitude of the VSI output during the switching event. 
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VI. FULLY SYNCHRONIZED REDUNDANT ARCHITECTURE 

The final goal of the research was to design the redundant controller architecture 

so that the secondary controller would come online at the same place the primary 

controller failed.  The final XILINX model that achieved all of the objectives of this 

research is shown in Figure 36.   
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Figure 36.   XILINX Model of the Redundant Controller Design with the Theta 
Synchronization and the Integrator Values of the Primary Controller 

Passed. 

Until this point in the design it was necessary to keep the secondary controller’s 

integrator values set to zero to prevent it from coming online at some random point and 

potentially damaging the VSI.  However, keeping the integrator values at zero prior to 
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sensing a fault in the system meant that the VSI output would have to start at zero and 

work its way back up to steady state.  Although the loss of power would be brief, it would 

not be an acceptable design to meet military standards [1].  This problem could be solved 

by sending the four integrator values from the primary controller to the corresponding 

integrators in the secondary controller to be used as a starting point when it came online.  

However, the process of sending data between two physically independent FPGAs added 

an extra degree of difficulty to that approach.  In order to send a binary value out of the 

FPGA there had to be one FPGA pin assigned for each bit of the value.  Therefore, if four 

twelve bit words were to be sent, forty-eight output pins on the FPGA would need to be 

used to send each bit out.  Since this would not have been a feasible solution given the 

resources used in this research, an alternate way of passing the data had to be developed. 

A. INITIAL CONDITIONS TRANSFER SOFTWARE 

The solution that was implemented to achieve the objective of passing the initial 

conditions from the primary to the secondary controller was to create additional code that 

would serialize each of the twelve bit integrator values from the primary controller and 

concatenate them into a string of forty-eight single bits.  By doing this the data was able 

to be sent using a single output pin on the primary FPGA and a single input pin on the 

secondary FPGA.  Additional code also had to be developed for the secondary controller 

to deserialize the string of data back into four separate values that could be sent to the 

appropriate integrators. 

The serialization portion of the software was designed to take in four binary 

values of any size, convert them to twelve bit values with specified binary points, and 

reinterpret them into unsigned twelve bit values.  The four unsigned twelve bit values 

were then sent into a XILINX Mcode block where MATLAB code selected the four 

values to be sent out to another Mcode block that serialized the bits into a Manchester 

format.  The final serialized output consisted of a start bit, a forty-eight bit string, and a 

stop bit.  This string was then sent into the deserializaion portion of the software were the 

bits were reassembled back into four individual values.  The Manchester coding scheme 

used in the software interpreted a rising edge in the middle of a bit as a zero and a falling 
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edge as a one.  The serialization code is listed in Appendix F.  Once the serial to parallel 

software was shown to work reliably in the software, the four PI blocks in both the 

primary and secondary controllers were modified to send and receive the data properly. 

1. Primary Controller 

The only change made to the primary controller was the addition of the 

serialization portion of the software.  No modifications to the PI control blocks were 

needed to be made other than to send the integrator values to the serialization block.  The 

primary controller sent out all four integrator values into the serialization portion of the 

software.  The four values were serialized into a string of forty-eight bits and then sent 

out a single bit output gate. 

2. Secondary Controller 

The secondary controller received and decoded the serialized data from the 

primary controller using the deserialization portion of the software.  The serialized bits 

were then broken back out into four twelve bit unsigned values.  Finally the four values 

were reinterpreted into 2’s complement values with the appropriate binary points.  The 

appropriate integral value was then read by the corresponding PI control blocks through a 

register latch until a fault occurred.  When the secondary controller sensed the fault 

signal, it took the last inputs sent to the four integrators and latched the values to be used 

as the initial conditions for the secondary controller.  The modifications made to the Ve
q 

integrator are shown in Figure 37.  The same design was used for all four integrators of 

the secondary controller to achieve the initial conditions transfer. 



 56

1
iq_e_ref

d

en
qz-1

Register

x 0.15

CMult1

x 1.042e-007

CMult

a

b
a + bz-1

AddSub2

a

b
a + bz-1

AddSub1

a

b
a - b

AddSub
b

rst
q

Accumulator

4
sync in

3
reset

2
I_meas

1
I_ref

 

Figure 37.   Initial Condition Configuration for the Secondary Integrators. 

The output pin used to send out the serialized data from the primary controller and 

the input pin used to receive the data on the secondary controller are listed in Table 6.   

  

Serialization pins  FPGA Pins Interface Connection 

Primary controller output T6 U45 

Secondary controller input C8 R54 

Table 6.   Serialization Pins. 

 

B. SIMULATED RESULTS 

1. Simulated Test of Serialization Software 

In order to test the code, computer simulations were conducted to demonstrate 

that the serialization software could take in four distinct twelve bit values, send out one 

bit at a time, and reassemble the bits back into the same four bit values.  The Manchester 

output of the serialization portion of the software with the four constant input values of 

one, two, three, and four are shown in Figure 38.  Each of the input constants were set as 

sixteen bit 2’s complement values with binary point values of three.  The serialization 
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software then took each of the constant values and recast them as twelve bit values with 

varying binary points assigned to work in the actual software design.  The binary points 

for the one through four values were eight, eight, two, and six respectively.  The new 

twelve bit values were reinterpreted into unsigned twelve bit values with no binary point 

before being serialized and concatenated into a string of forty-eight bits.  The four 

individual binary values and the subsequent forty-eight bit string are shown in equation 

(6.1). 

 

 

Constant One = 000100000000
Constant Two = 001000000000
Constant Three = 000000001100
Constant Four = 000100000000
Serialized String = 000100000000001000000000000000001100000100000000

 (6.1) 
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Figure 38.   Serialized Data of Four Twelve Bit Constants plus a Start and a 
Stop Bit. 
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Using the Manchester decoding described in this chapter, the forty-eight bit string 

of data in equation (6.1) can be shown to correspond directly to the serialized string of 

data, minus the start and stop bit, in Figure 38.    

To test the deserialization portion of the software, and to provide further 

confirmation that the serialization software would work in the redundant architecture 

design, a computer simulation was run which displayed the four initial conditions of the 

primary controller prior to being serialized and the four deserialized outputs in the 

secondary controller.  The graphical representations of these four signals before and after 

the serialization software were then compared.  The software was run for 50ms while the 

primary controller was moving toward steady state.  This simulation represented roughly 

one thousand serialized strings of the four twelve bit words which provided a high degree 

of confidence that the software was not producing any bit errors. 

The simulated results of the four initial condition values being sent into the 

serialization block of the primary controller and the four output values of the 

deserialization block in the secondary controller are shown in Figure 39.  The simulated 

results of the graphs indicate the values sent from the primary controller were accurately 

interpreted by the secondary controller without any bit errors. 
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Figure 39.   (a) The four integrator values of the primary controller prior to 
being serialized by the software. (b) The four output values of the 

deserialization block in the secondary controller. 

2. Simulated Output Results 

The simulated graph of a single phase of the output when the theta values were 

synchronized, and the serialized integrator values of the primary controller were passed 

to the secondary controller is shown in Figure 40.  The same output with all three phases 

represented is shown in Figure 41.  In these simulations the step function was set to occur 

at 0.05 seconds, and the graphs were zoomed in on the switching event to try and detect 

any minor disturbances in the sine wave.  The simulated results indicated that passing the 
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integrator values from the primary to the secondary controller through the serialization 

software and latching the values in the secondary controller when a fault was detected 

would eliminate the remaining disturbance in the software.  The absence of any 

disturbance in the computer simulated output indicated that this was a viable solution for 

the redundant architecture that would meet military standards [1]. 
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Figure 40.   Simulated Single Phase Voltage Output with Theta Synchronized, 
Initial Conditions Passed, and the Switching Event at 0.05 seconds. 
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Figure 41.   Simulated Three Phase Voltage Output with Theta Synchronized, 
Initial Conditions Passed, and the Switching Event at 0.05 seconds. 

C. EXPERIMENTAL RESULTS 

1. Experimental Test of Serialization Software 

The first experimental test that was developed was to demonstrate that the 

serialized data from the primary board was actually being sent to the secondary board.  

To provide experimental confirmation of this, the serialization block of the software was 

loaded on the primary board with the same four constant values discussed in section B as 

its four input values and the output pin assigned to the FPGA from Table 6.  The 

secondary board was then loaded with the deserialization block of the software along 

with another serialization block.  This configuration on the secondary board would take 

the bit string from the primary board and deserialize the data back into four constant 

values.  Those four constant values were then sent back into the serialization block on the 
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secondary board and sent out of the board as a second string of forty-eight bits with a 

start and stop bit.  If the data was being passed accurately from the primary to the 

secondary controller, and the serialization and deserialization blocks of the software were 

operating properly on the two FPGAs, the output string from the secondary controller 

should have been identical to the output string from the primary controller with roughly a 

50 sµ  delay.  The two individual bit strings from the primary and secondary boards are 

shown in Figure 42.  These two graphs show approximately a 55 sµ  delay present in the 

output of the secondary board due to the time it took for the data string from the primary 

board to be deserialized into four constant values and then serialized back into a second 

data string. 
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Figure 42.   Serialized Data of Four Constants from the Primary and Secondary 
boards. 

The time delay was removed and the two graphs were laid on top of each other to 

make it easier to see whether or not the two bit streams were the same in Figure 43.   The 
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four constant values that were serialized and sent out of the primary board were identical 

to the four constant values that were serialized and sent out of the secondary board.  

Further analysis of the graph showed that the serialized data from both of the boards 

corresponded to the forty-eight bit string in equation (6.1).  These results experimentally 

confirmed the simulated serialization results as well as the ability of a data string to be 

passed from one physical board to another. 
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Figure 43.   The Serialized Output from the Secondary Controller 
Superimposed on the  Output from the Primary Controller 

The limitations of operating Chipscope simultaneously on two separate boards 

prevented experimental tests from being taken similar to the simulations presented in 

Figure 39.  It was not possible to collect data from both boards simultaneously because 

Chipscope could only read one board at a time through the XILINX parallel cable.  The 

oscilloscope was also not able to be used to measure the actual integrator values because 

it would have required forty-eight additional test pins from each board to pass all of the 
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information out of the FPGAs.  This inability to read the internal integrator values were 

why the bit transfer test presented in this section was developed.  This bit transfer test 

along with the output results of the switching event in the next section provided sufficient 

data that the integrator values were being transferred from the primary to the secondary 

board correctly. 

2. Experimental Output Results 
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Figure 44.   Three Single Phase Experimental Output Measurements with 
Theta Synchronized, Initial Conditions Passed, and the Switching 

Event at 0.05 seconds. 

Three experimental measurements of a single phase of the VSI output when both 

the theta synchronization pulse and the initial conditions were being passed from the 

primary to the secondary boards are shown in Figure 44.  For these experimental tests the 

switching control software that was used in the previous chapters was implemented in 

order to take multiple measurements with the switching event at the same point of the 
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output.  The switching event for the experimental results occurred at 0.05 seconds on the 

graph.  All of the experimental measurements showed no disturbance in the VSI output 

during the switching event. 
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Figure 45.   Experimental Measurements of the Three Phases of the VSI 
Output with Theta Synchronized, Initial Conditions Passed, and the 

Switching Event at 0.05 seconds. 

The oscilloscope used for the experimental results was not able to take readings of 

all three phases of the output at the same time.  However, since the switching event was 

set to trigger at the same theta point for each measurement, it was possible to take 

separate measurements of each phase and place them on the same graph in order to show 

the effects of the switching event on each phase of the output. The experimental results of 

all three phases of the output are shown in Figure 45.  Despite the fact that the 

measurements had significant distortion in the voltage output, the measurements of all 

three phases showed no disturbance due to the switching event.  Both the simulated and 
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experimental output results provided a high level of confidence in the ability of this 

design to switch from a primary to a secondary controller when a fault occurred with 

virtually no disturbance to the output of the VSI. 
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Figure 46.   Three Single Phase Experimental VSI Output Measurements with 
Faults at random theta values and the Switching Event at 0.05 seconds. 

All of the experimental results presented so far showed the switching event at a 

forced position of the voltage output in order to lay multiple measurements on top of each 

other.  Since an actual redundant system would not want to force the fault signal to wait 

for a second condition before it switched, it was necessary to take some output 

measurements without the switching control software installed.  Forcing the switching to 

occur at the same theta value every time could have also hidden possible disturbances 

when the system switched at an undefined theta value.  In order to test this idea, three 

experimental measurements were taken with the switching control software block 

removed in order to observe the affects of the switching event on the voltage output at 
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random points.  The results of the three measurements with the switching event triggered 

at 0.05 seconds are shown in Figure 46.  Although the distortion was still present in all of 

the measurements, there did not seem to be any significant disturbance in the outputs.  

The only minor disturbance at the 0.05 second switching event was in the red and blue 

graphs of the figure.  However, the disturbance was so minor that it was difficult to 

determine if it was disturbance due to the switching or just normal distortion of the 

output. 

D. CHAPTER SUMMARY 

This chapter discussed the solution developed to be able to pass the four 

integrator values of the primary controller to the secondary controller using a single 

output pin on the primary controller and single input pin on the secondary controller.  The 

addition of communications software that enabled the four integrator values of the 

primary controller to be serialized, sent through a signal bit output on the FPGA to the 

secondary controller, and deserialized into the four individual values to be sent to the four 

PI control block in the secondary controller was explained.  The modifications to the PI 

control blocks in the secondary controller that enabled it to read the values from the 

primary controller and latch the last value sent when a fault was triggered was also 

discussed in this chapter.  Simulation and experimental test results on the serialization 

software were presented to demonstrate its effectiveness in passing data accurately.  

Simulated and experimental test results of the final VSI output were also presented, 

which indicated that passing the integrator values from the primary to the secondary 

controller eliminated the remaining amplitude disturbance caused by the switching event.  

A degree of distortion on the output waves was also observed which could have produced 

some minor disturbances during certain switching events.  The next chapter presents the 

final conclusions of this thesis along with the original contributions made by this 

research.  Possible follow on research that could be pursed in the future is also discussed. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This thesis demonstrated the potential for the improved reliability of a VSI to be 

achieved through the implementation of operating standby redundant controller 

architecture.  The VSI used in this thesis was designed using computer simulations that 

were then validated through experimental results.  The closed loop space vector 

modulation controllers selected for this research were designed so that when a high/low 

fault was detected the system would automatically switch from the primary to the 

secondary controller.  The secondary controller was designed to operate physically 

independent of the primary controller to reduce the risk of damage when a fault occurred, 

thereby providing true redundancy.  After confirming that the initial redundant design 

worked, modifications to the software were made to allow a theta synchronization pulse 

from the primary to the secondary controller.  This addition to the design eliminated the 

random phase disturbance in the VSI output during the switching event.  The final step in 

the redundant design was the development of serialization software that would allow the 

four integrator values of the primary controller to be passed to the secondary controller 

through a single FPGA bit.  Modifying the redundant software to pass the integrator 

values from the primary to the secondary controller to act as initial conditions when a 

fault occurred produced negligible disturbance in the VSI output during the switching 

event. 

The experimental measurements of the output when both the theta pulse and the 

initial conditions were passed showed some distortion to the signal which might have 

caused some minor disturbance during some of the switching events.  This distortion was 

most likely due to the selection of the PI gains and the hardware values.  Creating a more 

stable system by selecting ideal hardware and gain values could help reduce the 

uncertainty of whether the minor disturbance during certain switching events was due to 

the distortion in the output signal or an issue with the data transfer from the primary to 

the secondary controller. 
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B. RECOMMENDATIONS 

There are still some questions to be answered before this design could be put into 

any practical system.  The ability of a VSI to switch to a redundant controller without any 

significant output disturbance provides the basis for many follow on research topics.  

Some possible future topics are discussed in the following sections. 

1. Reduction of the Distortion in the VSI 

When the VSI output of the experimental results was viewed closely, there was 

significant distortion due to the gain values and noise in the system.  This distortion could 

be reduced by determining the ideal gain and hardware values for the system.  Designing 

a filter for the harmonic distortion could also improve the results which would help 

determine if there were any minor random disturbances during the switching event that 

were being hidden by the distortion of the output. 

2. Additional Redundant Components 

Demonstrating that it is possible for a VSI to switch to a redundant controller 

without any disturbance in its output provides the basis to implement more redundant 

components of the architecture presented in Chapter I of this thesis.  Follow-on research 

could implement this redundant controller design in a VSI with a four-switch pole 

inverter topology. 
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APPENDIX A: SPACE VECTOR MODULATION NOTES 
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APPENDIX B: VIRTEX II FPGA 
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APPENDIX C: CUSTOMIZED INTERFACE BOARD 

A. PCB 123 LAYOUT 
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B. SCHEMATIC 
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APPENDIX D: THREE PHASE RECTIFIER 
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APPENDIX E: XILINX BLOCK CODE 
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APPENDIX F: MATLAB CODE 

A. INITIALIZATION FILE 

Vdc=120; 
dc=120; 
Vref=50; 
  
Kp_i=.01/3*(Vdc/sqrt(3));%current PI gain is amplified to account for 
the SV modulation scaling 
Ki_i=6*(Vdc/sqrt(3));    %Current control loop gain 
Kp_v=0.15; 
Ki_v=2.5; 
  
  
Vdc_comp=30; 
Vcesat=2.3; 
delaycount=1; 
oversample=1;  %1 4 work 
fin=100; 
  
tstop=40/60; 
pulsect = 2400/oversample; 
step_ct=1; 
tstep = 40e-9*step_ct; 
clkPeriod=tstep; 
mod_index=.75; 
F_mat = [0 0 0 1;1 1 2 0;2 2 3 0;3 3 0 0]; 
O_mat = F_mat; 
  
  
s1=2*pi*1; 
s2=2*pi*5000; 
s3=2*pi*50000; 
alpha=.0002*sqrt(3)/Vdc/2; 
  
  
Lfa=350e-6; 
Lfb=Lfa; 
Lfc=Lfa; 
Cf= 60e-6; 
Cfa=Cf;Cfb=Cfa;Cfc=Cfb; 
Loa=1e-4; 
Lob=Loa;Loc=Loa; 
Roa=20; 
Rob=Roa; 
Roc=Roa; 
  
Amat_indI = -inv([Lfa -Lfb;Lfc Lfb+Lfc])*.005*[1 -1;1 2]; 
Bmat_indI = inv([Lfa -Lfb;Lfc Lfb+Lfc]); 
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Cmat_indI = [1 0 ;0 1 ;-1 -1 ];    %Ic = -Ia-Ib 
Dmat_indI = zeros(3,2); 
  
Amat_caps = zeros(3); 
Bmat_caps = [1/Cfa 0 0; 0 1/Cfb 0; 0 0 1/Cfc]; 
Cmat_caps = eye(3); 
Dmat_caps = zeros(3); 
  
Amat_load = [-Roa/Loa 0 0; 0 -Rob/Lob 0; 0 0 -Roc/Loc]; 
Bmat_load = [1/Loa 0 0; 0 1/Lob 0 ; 0 0 1/Loc]; 
Cmat_load = eye(3); 
Dmat_load = zeros(3); 

 

B. INTERNAL CODE 

1. thetaconv2.m 

function [y] = thetaconv(x) 
gain1 = xfix({xlSigned,14,10},2*3.14); 
gain2 = xfix({xlSigned,14,10},1/gain1) 
if x<0 
y=xfix({xlUnsigned,10,0},(x+gain1)*gain2*1024); 
else 
y=xfix({xlUnsigned,10,0},x*gain2*1024); 
end 

2. overflow3.m 

function [sector1, sector2, sector3, sector4, sector5, sector6, z] = 
overflow3(x) 
%gain = xfix({xlUnsigned,10,7},2.359296/3);%for 60 hz 
gain = xfix({xlUnsigned,10,7},2.359296);%for 180 hz 
%tempv=gain*x; 
tempv=x; 
if tempv<=171-1 
    sector1=xfix({xlBoolean},1); 
    sector2=xfix({xlBoolean},0); 
    sector3=xfix({xlBoolean},0); 
    sector4=xfix({xlBoolean},0); 
    sector5=xfix({xlBoolean},0); 
    sector6=xfix({xlBoolean},0); 
    z=xfix({xlUnsigned,10,0},tempv); 
elseif tempv<=2*171-1 
    sector1=xfix({xlBoolean},0); 
    sector2=xfix({xlBoolean},1); 
    sector3=xfix({xlBoolean},0); 
    sector4=xfix({xlBoolean},0); 
    sector5=xfix({xlBoolean},0); 
    sector6=xfix({xlBoolean},0); 
    z=xfix({xlUnsigned,10,0},tempv-171); 
elseif tempv<=3*171-1 
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    sector1=xfix({xlBoolean},0); 
    sector2=xfix({xlBoolean},0); 
    sector3=xfix({xlBoolean},1); 
    sector4=xfix({xlBoolean},0); 
    sector5=xfix({xlBoolean},0); 
    sector6=xfix({xlBoolean},0); 
    z=xfix({xlUnsigned,10,0},tempv-2*171); 
elseif tempv<=4*171-1 
    sector1=xfix({xlBoolean},0); 
    sector2=xfix({xlBoolean},0); 
    sector3=xfix({xlBoolean},0); 
    sector4=xfix({xlBoolean},1); 
    sector5=xfix({xlBoolean},0); 
    sector6=xfix({xlBoolean},0); 
    z=xfix({xlUnsigned,10,0},tempv-3*171); 
elseif tempv<=5*171-1 
    sector1=xfix({xlBoolean},0); 
    sector2=xfix({xlBoolean},0); 
    sector3=xfix({xlBoolean},0); 
    sector4=xfix({xlBoolean},0); 
    sector5=xfix({xlBoolean},1); 
    sector6=xfix({xlBoolean},0); 
    z=xfix({xlUnsigned,10,0},tempv-4*171); 
else 
    sector1=xfix({xlBoolean},0); 
    sector2=xfix({xlBoolean},0); 
    sector3=xfix({xlBoolean},0); 
    sector4=xfix({xlBoolean},0); 
    sector5=xfix({xlBoolean},0); 
    sector6=xfix({xlBoolean},1); 
    z=xfix({xlUnsigned,10,0},tempv-5*171); 
end 
 

3. ramp2mod.m 

function z = ramp2(x) 
gain=xfix({xlSigned,20,19},1/2400) 
z=xfix({xlSigned,14,13},x*gain); 

 

C. SERIALIZATION CODE 

1. System Control Ring 

function [Data_out, Index, Iq_en, Id_en, Vq_en, Vd_en, Busy, Send, 
Counter] = 
SystemControllerRingComm(Vd_Data_in,Id_Data_in,Vq_Data_in,Iq_Data_in, 
Index_fb, Encoder_busy, Busy_fb, Iq_en_fb, Id_en_fb, Vq_en_fb,Vd_en_fb, 
Counter_fb); 
  
COUNTER_INITIAL_VALUE=100;  %% 
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%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Busy  %% 
%%%%%%%%%%%%%%%%%%%%%% 
if (Busy_fb==0) & (Encoder_busy==0) & (Counter_fb==0); %% Trigger 
condition 
    Counter= xfix({xlUnsigned, 7, 0},COUNTER_INITIAL_VALUE); 
    Busy=xfix({xlUnsigned,1,0},1); 
elseif (Busy_fb==1) & (Index_fb==10) & (Iq_en_fb==0) & (Id_en_fb==0) &  
(Vq_en_fb==0) & (Vd_en_fb==0); 
    Counter=xfix({xlUnsigned, 7, 0},Counter_fb-1);  
    Busy=xfix({xlUnsigned,1,0},0); 
elseif (Busy_fb==1) 
    Counter= xfix({xlUnsigned, 7, 0},COUNTER_INITIAL_VALUE); 
    Busy=xfix({xlUnsigned,1,0},1); 
else 
    Counter=xfix({xlUnsigned, 7, 0},Counter_fb-1);  
    Busy=xfix({xlUnsigned,1,0},0); 
end 
  
%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Send  %% 
%%%%%%%%%%%%%%%%%%%%%% 
if (Busy_fb==0) & (Encoder_busy==0) & (Counter_fb==0); %% Trigger 
condition 
    Send=xfix({xlUnsigned,1,0},1); 
elseif (Encoder_busy==1);  %% Disable if encoder is busy 
    Send=xfix({xlUnsigned,1,0},0); 
elseif (Busy_fb==1) & (Index_fb==11) & (Iq_en_fb==0) & (Id_en_fb==0) & 
(Vq_en_fb==0) & (Vd_en_fb==0); 
    Send=xfix({xlUnsigned,1,0},1);  %% End Case 
elseif (Busy_fb==1); 
    Send=xfix({xlUnsigned,1,0},1); 
else  
    Send=xfix({xlUnsigned,1,0},0); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Index  %% 
%%%%%%%%%%%%%%%%%%%%%%% 
if (Busy_fb==0) & (Encoder_busy==0) & (Counter_fb==0); %% Trigger 
condition 
    Index=xfix({xlUnsigned,4,0},11); 
elseif (Busy_fb==0) 
    Index=xfix({xlUnsigned,4,0},0); 
elseif (Encoder_busy==1) 
    Index=xfix({xlUnsigned,4,0},Index_fb); 
elseif (Index_fb>0) & (Encoder_busy==0)  %% Decrement 
    Index=xfix({xlUnsigned,4,0},Index_fb-1); 
elseif (Index_fb==0) 
    Index=xfix({xlUnsigned,4,0},11); 
else  
    Index=xfix({xlUnsigned,4,0},0); 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Iq_en  %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if (Busy_fb==0) & (Encoder_busy==0) & (Counter_fb==0)  %%trigger Case 
    Iq_en=xfix({xlUnsigned,1,0},1); 
elseif (Busy_fb==0)            
    Iq_en=xfix({xlUnsigned,1,0},0); 
elseif (Index_fb>0) & (Iq_en_fb==1) 
    Iq_en=xfix({xlUnsigned,1,0},1); 
elseif (Index_fb==0) & (Iq_en_fb==1) & (Encoder_busy==0) 
    Iq_en=xfix({xlUnsigned,1,0},0); 
elseif (Index_fb==0) & (Iq_en_fb==1) & (Encoder_busy==1) 
    Iq_en=xfix({xlUnsigned,1,0},1); 
else 
    Iq_en=xfix({xlUnsigned,1,0},0); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Vq_en %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if (Busy_fb==0); 
    Vq_en=xfix({xlUnsigned,1,0},0); 
elseif (Index_fb==0) & (Encoder_busy==0) & (Iq_en_fb==1)%% Start Vq_en 
    Vq_en=xfix({xlUnsigned,1,0},1); 
elseif (Index_fb>0) & (Vq_en_fb==1); %% the rest > 0 
    Vq_en=xfix({xlUnsigned,1,0},1); 
elseif (Index_fb==0) & (Encoder_busy==1) & (Vq_en_fb==1) %% last case 
    Vq_en=xfix({xlUnsigned,1,0},1); 
else 
    Vq_en=xfix({xlUnsigned,1,0},0); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Id_en %% 
%%%%%%%%%%%%%%%%%%%%%%%%% 
if (Busy_fb==0); 
    Id_en=xfix({xlUnsigned,1,0},0); 
elseif (Index_fb==0) & (Encoder_busy==0) & (Vq_en_fb==1)%% Start Id_en 
    Id_en=xfix({xlUnsigned,1,0},1); 
elseif (Index_fb>0) & (Id_en_fb==1); %% the rest > 0 
    Id_en=xfix({xlUnsigned,1,0},1); 
elseif (Index_fb==0) & (Encoder_busy==1) & (Id_en_fb==1) %% last case 
    Id_en=xfix({xlUnsigned,1,0},1); 
else 
    Id_en=xfix({xlUnsigned,1,0},0); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Vd_en    %% 
%%%%%%%%%%%%%%%%%%%%%%%%% 
if (Busy_fb==0); 
    Vd_en=xfix({xlUnsigned,1,0},0); 
elseif (Index_fb==0) & (Encoder_busy==0) & (Id_en_fb==1)%% Start Vd_en 
    Vd_en=xfix({xlUnsigned,1,0},1); 
elseif (Index_fb>0) & (Vd_en_fb==1); %% the rest > 0 
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    Vd_en=xfix({xlUnsigned,1,0},1); 
elseif (Index_fb==0) & (Encoder_busy==1) & (Vd_en_fb==1) %% last case 
    Vd_en=xfix({xlUnsigned,1,0},1); 
else 
    Vd_en=xfix({xlUnsigned,1,0},0); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Data out    %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
if (Busy_fb==0)  %% Start bit 
    Data_out=xfix({xlUnsigned,1,0},0); 
elseif(Busy_fb==1) 
    if (Iq_en_fb==1) 
        if (Index_fb == 11) 
            Data_out = 
xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,11,11)); 
        elseif (Index_fb == 10) 
            Data_out = 
xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,10,10)); 
        elseif (Index_fb == 9) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,9,9)); 
        elseif (Index_fb == 8) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,8,8)); 
        elseif (Index_fb == 7) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,7,7)); 
        elseif (Index_fb == 6) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,6,6)); 
        elseif (Index_fb == 5) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,5,5)); 
        elseif (Index_fb == 4) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,4,4)); 
        elseif (Index_fb == 3) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,3,3)); 
        elseif (Index_fb == 2) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,2,2)); 
        elseif (Index_fb == 1) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,1,1)); 
        else 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,0,0)); 
        end 
         
    elseif (Vq_en_fb==1) 
        if (Index_fb == 11) 
            Data_out = 
xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,11,11)); 
        elseif (Index_fb == 10) 
            Data_out = 
xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,10,10)); 
        elseif (Index_fb == 9) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,9,9)); 
        elseif (Index_fb == 8) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,8,8)); 
        elseif (Index_fb == 7) 
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            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,7,7)); 
        elseif (Index_fb == 6) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,6,6)); 
        elseif (Index_fb == 5) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,5,5)); 
        elseif (Index_fb == 4) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,4,4)); 
        elseif (Index_fb == 3) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,3,3)); 
        elseif (Index_fb == 2) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,2,2)); 
        elseif (Index_fb == 1) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,1,1)); 
        else 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,0,0)); 
        end 
         
    elseif (Id_en_fb==1) 
        if  (Index_fb == 11) 
            Data_out = 
xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,11,11)); 
        elseif (Index_fb == 10) 
            Data_out = 
xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,10,10)); 
        elseif (Index_fb == 9) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,9,9)); 
        elseif (Index_fb == 8) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,8,8)); 
        elseif (Index_fb == 7) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,7,7)); 
        elseif (Index_fb == 6) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,6,6)); 
        elseif (Index_fb == 5) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,5,5)); 
        elseif (Index_fb == 4) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,4,4)); 
        elseif (Index_fb == 3) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,3,3)); 
        elseif (Index_fb == 2) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,2,2)); 
        elseif (Index_fb == 1) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,1,1)); 
        else 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,0,0)); 
        end 
         
    elseif (Vd_en_fb==1) 
        if (Index_fb == 11) 
            Data_out = 
xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,11,11)); 
        elseif (Index_fb == 10) 
            Data_out = 
xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,10,10)); 
        elseif (Index_fb == 9) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,9,9)); 



 114

        elseif (Index_fb == 8) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,8,8)); 
        elseif (Index_fb == 7) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,7,7)); 
        elseif (Index_fb == 6) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,6,6)); 
        elseif (Index_fb == 5) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,5,5)); 
        elseif (Index_fb == 4) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,4,4)); 
        elseif (Index_fb == 3) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,3,3)); 
        elseif (Index_fb == 2) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,2,2)); 
        elseif (Index_fb == 1) 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,1,1)); 
        else 
            Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,0,0)); 
        end 
         
     
         
    elseif (Index_fb==11) 
        Data_out = xfix({xlUnsigned,1,0},1);  %% Stop Bit 
    else  
        Data_out=xfix({xlUnsigned,1,0},1); 
    end 
else 
    Data_out=xfix({xlUnsigned,1,0},0); 
end 

 

2. Manchester Encoder 

function [Counter,Data_out, Busy] = ManchesterEncoder(Counter_fb, 
Data_in, Send, Data_fb, Busy_fb) 
  
COUNTER_INITIAL_VALUE =24; 
HALF_OUTPUT_WIDTH = 13; 
  
%%%%%%%%%%%%%%%%%%%%% 
%% Logic for Busy  %% 
%%%%%%%%%%%%%%%%%%%%% 
if (Send == 1) & (Busy_fb == 0); 
    Busy = xfix({xlUnsigned, 1, 0},1); 
elseif (Busy_fb == 1) & (Counter_fb > 2)  %count to 2 instead of zero 
    Busy = xfix({xlUnsigned, 1, 0},1); 
else 
    Busy= xfix({xlUnsigned, 1, 0},0); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%% 
%% Logic for Data_out %% 
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%%%%%%%%%%%%%%%%%%%%%%%% 
if (Send == 1) & (Busy_fb == 0) & (Data_in == 0) %%Start sending a 0->1 
tran 
    Data_out=xfix({xlUnsigned, 1, 0},0); 
elseif (Send == 1) & (Busy_fb == 0) & (Data_in == 1) %%Start sending a 
0->tran 
    Data_out=xfix({xlUnsigned, 1, 0},1); 
elseif (Busy_fb == 1) & (Counter_fb == HALF_OUTPUT_WIDTH) %%Toggle 
output 
    Data_out=xfix({xlUnsigned, 1, 0}, (Data_fb +1)); 
else 
    Data_out=xfix({xlUnsigned, 1, 0}, Data_fb); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%% 
%% Logic for Counter  %% 
%%%%%%%%%%%%%%%%%%%%%%%% 
if (Busy_fb == 0) 
    Counter= xfix({xlUnsigned, 5, 0},COUNTER_INITIAL_VALUE); 
elseif (Counter_fb==0) 
    Counter= xfix({xlUnsigned, 5, 0},COUNTER_INITIAL_VALUE); 
else 
    Counter=xfix({xlUnsigned, 5, 0},Counter_fb-1);  
end 
 

 

3. Manchester Decoder 

function [Busy, Data_out, Counter, Data_valid,Data_fil] = 
ManchesterDecoder (Busy_fb, Data_Delayed, Data_in, Data_out_fb, 
Counter_fb,In_delay1,In_delay2) 
  
COUNTER_INITIAL_VALUE=16;  %% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%   Checks that three samples in a row 
transition 
%%%%%%%%%%%%%%%%%%%%%%%%%   before changing the input data 
%%  Filter for Data_in  %% 
%%%%%%%%%%%%%%%%%%%%%%%%% 
if (Data_in == 0) & (In_delay1 == 0) &(In_delay2 == 0) &(Data_Delayed 
== 0); 
    Data_fil=xfix({xlUnsigned, 1, 0},0); 
elseif (Data_in == 0) & (In_delay1 == 0) &(In_delay2 == 0) 
&(Data_Delayed == 1); 
    Data_fil=xfix({xlUnsigned, 1, 0},0); 
elseif (Data_in == 0) & (In_delay1 == 0) &(In_delay2 == 1) 
&(Data_Delayed == 0); 
    Data_fil=xfix({xlUnsigned, 1, 0},0); 
elseif (Data_in == 0) & (In_delay1 == 0) &(In_delay2 == 1) 
&(Data_Delayed == 1); 
    Data_fil=xfix({xlUnsigned, 1, 0},1); 
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elseif (Data_in == 0) & (In_delay1 == 1) &(In_delay2 == 0) 
&(Data_Delayed == 0); 
    Data_fil=xfix({xlUnsigned, 1, 0},0); 
elseif (Data_in == 0) & (In_delay1 == 1) &(In_delay2 == 0) 
&(Data_Delayed == 1); 
    Data_fil=xfix({xlUnsigned, 1, 0},1); 
elseif (Data_in == 0) & (In_delay1 == 1) &(In_delay2 == 1) 
&(Data_Delayed == 0); 
    Data_fil=xfix({xlUnsigned, 1, 0},0); 
elseif (Data_in == 0) & (In_delay1 == 1) &(In_delay2 == 1) 
&(Data_Delayed == 1); 
    Data_fil=xfix({xlUnsigned, 1, 0},1); 
elseif (Data_in == 1) & (In_delay1 == 0) &(In_delay2 == 0) 
&(Data_Delayed == 0); 
    Data_fil=xfix({xlUnsigned, 1, 0},0); 
elseif (Data_in == 1) & (In_delay1 == 0) &(In_delay2 == 0) 
&(Data_Delayed == 1); 
    Data_fil=xfix({xlUnsigned, 1, 0},1); 
elseif (Data_in == 1) & (In_delay1 == 0) &(In_delay2 == 1) 
&(Data_Delayed == 0); 
    Data_fil=xfix({xlUnsigned, 1, 0},0); 
elseif (Data_in == 1) & (In_delay1 == 0) &(In_delay2 == 1) 
&(Data_Delayed == 1); 
    Data_fil=xfix({xlUnsigned, 1, 0},1); 
elseif (Data_in == 1) & (In_delay1 == 1) &(In_delay2 == 0) 
&(Data_Delayed == 0); 
    Data_fil=xfix({xlUnsigned, 1, 0},0); 
elseif (Data_in == 1) & (In_delay1 == 1) &(In_delay2 == 0) 
&(Data_Delayed == 1); 
    Data_fil=xfix({xlUnsigned, 1, 0},1); 
elseif (Data_in == 1) & (In_delay1 == 1) &(In_delay2 == 1) 
&(Data_Delayed == 0); 
    Data_fil=xfix({xlUnsigned, 1, 0},1); 
else  
    Data_fil=xfix({xlUnsigned, 1, 0},1); 
end 
  
%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Busy  %% 
%%%%%%%%%%%%%%%%%%%%%% 
if (Busy_fb == 0) & (Data_fil ~= Data_Delayed); 
    Busy=xfix({xlUnsigned, 1, 0},1); 
elseif (Busy_fb == 1) & (Counter_fb >0); 
    Busy=xfix({xlUnsigned, 1, 0},1); 
else  
    Busy=xfix({xlUnsigned, 1, 0},0);     
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Data_out and Data_valid  %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if (Busy_fb == 0) & ((Data_fil == 1) & (Data_Delayed == 0));  %%edge 
detected 
    Data_out=xfix({xlUnsigned, 1, 0},0); 
    Data_valid=xfix({xlUnsigned, 1, 0},1); 
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elseif (Busy_fb == 0) & ((Data_fil == 0) & (Data_Delayed == 1));%%1->0 
transition  
    Data_out=xfix({xlUnsigned, 1, 0},1); 
    Data_valid=xfix({xlUnsigned, 1, 0},1); 
else  
    Data_out=xfix({xlUnsigned, 1, 0},0); 
    Data_valid=xfix({xlUnsigned, 1, 0},0); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Counter  %% 
%%%%%%%%%%%%%%%%%%%%%%%%% 
if (Busy_fb == 0) & (Data_fil ~= Data_Delayed); 
        Counter=xfix({xlUnsigned, 6, 0},Counter_fb-1); 
elseif (Busy_fb == 1) & (Counter_fb >0); 
        Counter=xfix({xlUnsigned, 6, 0},Counter_fb-1); 
else 
        Counter = xfix({xlUnsigned, 6, 0},COUNTER_INITIAL_VALUE); 
end 
 

 

4. Ring Decoder 

function [Data_out, Iq_en, Id_en, Vq, Vd_en, Busy, Index, Write, 
Counter] = RingCommDecoder(Data_in, Data_valid, Iq_en_fb, Id_en_fb, 
Vq_fb, Vd_en_fb, Busy_fb, Index_fb, Data_out_fb, Counter_fb) 
  
START_BIT=0; 
STOP_BIT=1; 
DEADTIME_VALUE=40;  %% 
WATCHDOG_VALUE=200;  %% 
  
%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for CTR   %% 
%%%%%%%%%%%%%%%%%%%%%% 
if (Data_valid==1); %% data keeps resetting the counter 
    Counter= xfix({xlUnsigned, 8, 0},0); 
elseif (Counter_fb>WATCHDOG_VALUE)  %% watchdog fault condition 
    Counter=xfix({xlUnsigned, 8, 0},Counter_fb+1);  
else 
    Counter=xfix({xlUnsigned, 8, 0},Counter_fb+1); 
end 
  
%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Busy  %% 
%%%%%%%%%%%%%%%%%%%%%% 
if (Data_in==START_BIT) & (Data_valid==1) & (Busy_fb==0) & 
(Counter_fb>DEADTIME_VALUE)  %%Trigger condition 
    Busy=xfix({xlUnsigned,1,0},1); 
elseif (Busy_fb==0) 
    Busy=xfix({xlUnsigned,1,0},0); 
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elseif (Data_in==STOP_BIT) & (Data_valid==1) & (Index_fb==11) & 
(Iq_en_fb==0) & (Id_en_fb==0) & (Vq_fb==0) & (Vd_en_fb==0);  %%Stop 
Case 
    Busy=xfix({xlUnsigned,1,0},0); 
elseif (Busy_fb==1)  %% Otherwise latch the  Busy_fb value 
    Busy=xfix({xlUnsigned,1,0},1); 
else  
    Busy=xfix({xlUnsigned,1,0},0); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Index  %% 
%%%%%%%%%%%%%%%%%%%%%%% 
if (Data_in==START_BIT) & (Data_valid==1) & (Busy_fb==0) & 
(Counter_fb>DEADTIME_VALUE)  %%Trigger condition 
    Index=xfix({xlUnsigned,4,0},11); 
elseif (Busy_fb==0)  %% Idle other than the trigger 
    Index=xfix({xlUnsigned,4,0},0); 
elseif (Data_valid==0) %% Data not valid 
    Index=xfix({xlUnsigned,4,0},Index_fb); 
elseif (Index_fb==11) & (Iq_en_fb==0) & (Id_en_fb==0) & (Vq_fb==0) & 
(Vd_en_fb==0);  %%Stop Case 
    Index=xfix({xlUnsigned,4,0},0); 
elseif (Index_fb>0)  %% Decrement Condition  
    Index=xfix({xlUnsigned,4,0},Index_fb-1); 
elseif (Index_fb==0) 
    Index=xfix({xlUnsigned,4,0},11); 
else 
    Index=xfix({xlUnsigned,4,0},0); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Iq_en  %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
if (Data_in==START_BIT) & (Data_valid==1) & (Busy_fb==0) & 
(Counter_fb>DEADTIME_VALUE)  %%Trigger condition 
    Iq_en=xfix({xlUnsigned,1,0},1); 
elseif (Iq_en_fb==0) 
    Iq_en=xfix({xlUnsigned,1,0},0); 
elseif (Busy_fb==0) 
    Iq_en=xfix({xlUnsigned,1,0},0); 
elseif (Data_valid==0) 
    Iq_en=xfix({xlUnsigned,1,0},Iq_en_fb); 
elseif (Index_fb>0) & (Iq_en_fb==1); 
    Iq_en=xfix({xlUnsigned,1,0},1);  
elseif (Index_fb==0) & (Iq_en_fb==1)  
    Iq_en=xfix({xlUnsigned,1,0},0); 
else 
    Iq_en=xfix({xlUnsigned,1,0},0); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Id_en  %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
if (Busy_fb==0) 
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    Id_en=xfix({xlUnsigned,1,0},0); 
elseif (Data_valid==0) 
    Id_en=xfix({xlUnsigned,1,0},Id_en_fb); 
elseif (Index_fb==0) & (Iq_en_fb==1)  %% First instance 
    Id_en=xfix({xlUnsigned,1,0},1);  
elseif (Index_fb>0) & (Id_en_fb==1);  %% Body 
    Id_en=xfix({xlUnsigned,1,0},1);  
elseif (Index_fb==0) & (Id_en_fb==1);  %%Stop case 
    Id_en=xfix({xlUnsigned,1,0},0);  
else 
    Id_en=xfix({xlUnsigned,1,0},0); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Vq  %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
if (Busy_fb==0) 
    Vq=xfix({xlUnsigned,1,0},0); 
elseif (Data_valid==0) 
    Vq=xfix({xlUnsigned,1,0},Vq_fb);     
elseif  (Index_fb==0) & (Id_en_fb==1) %% First instance 
    Vq=xfix({xlUnsigned,1,0},1);  
elseif (Index_fb>0) & (Vq_fb==1);  %% Body 
    Vq=xfix({xlUnsigned,1,0},1);  
elseif (Index_fb==0) & (Vq_fb==1);  %%Stop case 
    Vq=xfix({xlUnsigned,1,0},0);  
else 
    Vq=xfix({xlUnsigned,1,0},0); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Vd_en  %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
if (Busy_fb==0) 
    Vd_en=xfix({xlUnsigned,1,0},0); 
elseif (Data_valid==0) 
    Vd_en=xfix({xlUnsigned,1,0},Vd_en_fb);     
elseif (Index_fb==0) & (Vq_fb==1) %% First instance 
    Vd_en=xfix({xlUnsigned,1,0},1);  
elseif (Index_fb>0) & (Vd_en_fb==1);  %% Body 
    Vd_en=xfix({xlUnsigned,1,0},1);  
elseif (Index_fb==0) & (Vd_en_fb==1);  %%Stop case 
    Vd_en=xfix({xlUnsigned,1,0},0);  
else 
    Vd_en=xfix({xlUnsigned,1,0},0); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Write 
%%(Data_valid==1) &  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if (Data_valid==1) & (Index_fb==0) & (Busy_fb==1) & ((Iq_en_fb==1) | 
(Id_en_fb==1) | (Vq_fb==1) | (Vd_en_fb==1)); 
    Write=xfix({xlBoolean},1); 
else 
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    Write=xfix({xlBoolean,1,0},0); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  Logic for Data_out    %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if (Busy_fb==0) 
    Data_out=xfix({xlUnsigned,12,0},0); 
elseif (Data_valid==0)  
    Data_out=xfix({xlUnsigned,12,0},Data_out_fb); 
elseif (Data_valid==1) 
    if (Index_fb==11) 
        Data_out=xfix({xlUnsigned,12,0},(2048 * Data_in)); 
    elseif (Index_fb==10) 
        Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (1024 * 
Data_in)); 
    elseif (Index_fb==9) 
        Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (512 * Data_in)); 
    elseif (Index_fb==8) 
        Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (256 * Data_in)); 
    elseif (Index_fb==7) 
        Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (128 * Data_in)); 
    elseif (Index_fb==6) 
        Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (64 * Data_in)); 
    elseif (Index_fb==5) 
        Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (32 * Data_in)); 
    elseif (Index_fb==4) 
        Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (16 * Data_in)); 
    elseif (Index_fb==3) 
        Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (8 * Data_in)); 
    elseif (Index_fb==2) 
        Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (4 * Data_in)); 
    elseif (Index_fb==1) 
        Data_out=xfix({xlUnsigned,12,0},(Data_out_fb + (2 * Data_in))); 
    else 
        Data_out=xfix({xlUnsigned,12,0},(Data_out_fb + Data_in)); 
    end 
else 
     Data_out=xfix({xlUnsigned,12,0},(Data_out_fb)); 
end 

 

D. CHIPSCOPE CODE 

function code_config(this_block) 
  
  % Revision History: 
  % 
  %   11-May-2007  (09:32 hours): 
  %     Original code was machine generated by Xilinx's System 
Generator after parsing 
  %     H:\Docs\work_files\faculty forms\lab 
development\buck_converter\black_box_buck.vhd 
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  % 
  % 
  
  this_block.setTopLevelLanguage('VHDL'); 
  
  this_block.setEntityName('code'); 
  
  % System Generator has to assume that your entity  has a 
combinational feed through;  
  %   if it  doesn't, then comment out the following line: 
  this_block.tagAsCombinational; 
  
  this_block.addSimulinkInport('ind'); 
  this_block.addSimulinkInport('ila_clock'); 
  this_block.addSimulinkInport('ind2'); 
  
  this_block.addSimulinkOutport('outd'); 
  this_block.addSimulinkOutport('load_on'); 
  
  outd_port = this_block.port('outd'); 
  outd_port.setType('UFix_1_0'); 
  load_on_port = this_block.port('load_on'); 
  load_on_port.setType('UFix_1_0'); 
  
  % ----------------------------- 
  if (this_block.inputTypesKnown) 
    % do input type checking, dynamic output type and generic setup in 
this code block. 
  
    if (this_block.port('ind').width ~= 1); 
      this_block.setError('Input data type for port "ind" must have 
width=1.'); 
    end 
  
    this_block.port('ind').useHDLVector(false); 
  
    if (this_block.port('ila_clock').width ~= 1); 
      this_block.setError('Input data type for port "ila_clock" must 
have width=1.'); 
    end 
  
    this_block.port('ila_clock').useHDLVector(false); 
  
    if (this_block.port('ind2').width ~= 48); 
      this_block.setError('Input data type for port "ind2" must have 
width=48.'); 
    end 
  
  end  % if(inputTypesKnown) 
  % ----------------------------- 
  
  % ----------------------------- 
   if (this_block.inputRatesKnown) 
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     setup_as_single_rate(this_block,'clk','ce') 
   end  % if(inputRatesKnown) 
  % ----------------------------- 
  
  
  % Add addtional source files as needed. 
  %  |------------- 
  %  | Add files in the order in which they should be compiled. 
  %  | If two files "a.vhd" and "b.vhd" contain the entities 
  %  | entity_a and entity_b, and entity_a contains a 
  %  | component of type entity_b, the correct sequence of 
  %  | addFile() calls would be: 
  %  |    this_block.addFile('b.vhd'); 
  %  |    this_block.addFile('a.vhd'); 
  %  |------------- 
  
  %    this_block.addFile(''); 
  %    this_block.addFile(''); 
  this_block.addFile('black_box_buck.vhd'); 
  
return; 
  
  
% ------------------------------------------------------------ 
  
function setup_as_single_rate(block,clkname,cename)  
  inputRates = block.inputRates;  
  uniqueInputRates = unique(inputRates);  
  if (length(uniqueInputRates)==1 & uniqueInputRates(1)==Inf)  
    block.setError('The inputs to this block cannot all be constant.');  
    return;  
  end  
  if (uniqueInputRates(end) == Inf)  
     hasConstantInput = true;  
     uniqueInputRates = uniqueInputRates(1:end-1);  
  end  
  if (length(uniqueInputRates) ~= 1)  
    block.setError('The inputs to this block must run at a single 
rate.');  
    return;  
  end  
  theInputRate = uniqueInputRates(1);  
  for i = 1:block.numSimulinkOutports  
     block.outport(i).setRate(theInputRate);  
  end  
  block.addClkCEPair(clkname,cename,theInputRate);  
  return;  
  
% ------------------------------------------------------------ 
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